Matches in SemOpenAlex for { <https://semopenalex.org/work/W2048449755> ?p ?o ?g. }
- W2048449755 endingPage "142" @default.
- W2048449755 startingPage "132" @default.
- W2048449755 abstract "Constraining the stable form of carbon in the deep mantle is important because carbon has key influence on mantle processes such as partial melting and element mobility, thereby affecting the efficiency of carbon exchange between the endogenic and exogenic reservoirs. In the reduced, mid- to deep-upper mantle, the chief host of deep carbon is expected to be graphite/diamond but in the presence of Fe–Ni alloy melt in the reduced mantle and owing to high solubility of carbon in such alloy phase, diamond may become unstable. To investigate the nature of stable, C-bearing phases in the reduced, mid- to deep-upper mantle, here we have performed experiments to examine the effect of sulfur on the phase relations of the Ni-rich portion of Fe–Ni ± Cu–C–S system, and carbon solubility in the Fe–Ni solid and Fe–Ni–S liquid alloys at 6–8 GPa and 800–1400 °C using a multianvil press. Low-temperature experiments for six starting mixes (Ni/(Fe + Ni) ∼ 0.61, 8–16 wt.% S) contain C-bearing, solid Fe–Ni alloy + Fe–Ni–C–S alloy melt + metastable graphite, and the solid alloy–out boundary is constrained, at 1150–1200 °C at 6 GPa and 900–1000 °C at 8 GPa for S-poor starting mix, and at 1000–1050 °C at 6 GPa and 900–1000 °C at 8 GPa for the S-rich starting mix. The carbon solubility in the liquid alloy significantly diminishes from 2.1 to 0.8 wt.% with sulfur in the melt increasing from 8 to 24 wt.%, irrespective of temperature. We also observed a slight decrease of carbon solubility in the liquid alloy with increasing pressure when alloy liquid contains >∼18 wt.% S, and with decreasing Ni/(Fe + Ni) ratio from 0.65 to ∼0.53. Based on our results, diamond, coexisting with Ni-rich sulfide liquid alloy is expected to be stable in the reduced, alloy-bearing oceanic mantle with C content as low as 20 to 5 ppm for mantle S varying between 100 and 200 ppm. Deep, reduced root of cratonic mantle, on the other hand, is expected to have C distributed among solid alloy, liquid alloy, and diamond for low-S (≤100 ppm S) domains and between liquid alloy and diamond in high-S (≥150 ppm S) domains. Our findings can explain the observation of Ni-rich sulfide and/or Fe–Ni alloy inclusions in diamond and suggest that diamond stability in the alloy-bearing, reduced mantle does not necessarily require excess C supply from recycled, crustal lithologies. Our prediction of diamond stability in the background, depleted upper mantle, owing to the interaction with mantle sulfides, is also consistent with the carbon isotopic composition of peridotitic diamond (δ13C of −5±1‰), which suggests no significant input from recycled carbon." @default.
- W2048449755 created "2016-06-24" @default.
- W2048449755 creator A5017236917 @default.
- W2048449755 creator A5043563326 @default.
- W2048449755 date "2015-02-01" @default.
- W2048449755 modified "2023-10-09" @default.
- W2048449755 title "Fe–Ni–Cu–C–S phase relations at high pressures and temperatures – The role of sulfur in carbon storage and diamond stability at mid- to deep-upper mantle" @default.
- W2048449755 cites W1509335520 @default.
- W2048449755 cites W1532991590 @default.
- W2048449755 cites W1965419910 @default.
- W2048449755 cites W1966278336 @default.
- W2048449755 cites W1967142733 @default.
- W2048449755 cites W1970527462 @default.
- W2048449755 cites W1977534025 @default.
- W2048449755 cites W1977968055 @default.
- W2048449755 cites W1980185796 @default.
- W2048449755 cites W1981883491 @default.
- W2048449755 cites W1985171308 @default.
- W2048449755 cites W1991894787 @default.
- W2048449755 cites W1992456608 @default.
- W2048449755 cites W1993040567 @default.
- W2048449755 cites W1995878469 @default.
- W2048449755 cites W1996000677 @default.
- W2048449755 cites W2001397154 @default.
- W2048449755 cites W2008901261 @default.
- W2048449755 cites W2017871388 @default.
- W2048449755 cites W2028155164 @default.
- W2048449755 cites W2033496518 @default.
- W2048449755 cites W2035763136 @default.
- W2048449755 cites W2035865639 @default.
- W2048449755 cites W2038979071 @default.
- W2048449755 cites W2045339936 @default.
- W2048449755 cites W2045743496 @default.
- W2048449755 cites W2048452279 @default.
- W2048449755 cites W2054898297 @default.
- W2048449755 cites W2061983288 @default.
- W2048449755 cites W2064245664 @default.
- W2048449755 cites W2068495563 @default.
- W2048449755 cites W2071397689 @default.
- W2048449755 cites W2073602380 @default.
- W2048449755 cites W2080629343 @default.
- W2048449755 cites W2086046814 @default.
- W2048449755 cites W2092034093 @default.
- W2048449755 cites W2093134444 @default.
- W2048449755 cites W2105942108 @default.
- W2048449755 cites W2110170874 @default.
- W2048449755 cites W2112059503 @default.
- W2048449755 cites W2113781348 @default.
- W2048449755 cites W2116797544 @default.
- W2048449755 cites W2143255710 @default.
- W2048449755 cites W2153809144 @default.
- W2048449755 cites W2160082886 @default.
- W2048449755 cites W2164375628 @default.
- W2048449755 cites W2171968174 @default.
- W2048449755 cites W2313071753 @default.
- W2048449755 cites W2318414251 @default.
- W2048449755 cites W2324178228 @default.
- W2048449755 cites W3020842808 @default.
- W2048449755 doi "https://doi.org/10.1016/j.epsl.2014.12.018" @default.
- W2048449755 hasPublicationYear "2015" @default.
- W2048449755 type Work @default.
- W2048449755 sameAs 2048449755 @default.
- W2048449755 citedByCount "52" @default.
- W2048449755 countsByYear W20484497552015 @default.
- W2048449755 countsByYear W20484497552016 @default.
- W2048449755 countsByYear W20484497552017 @default.
- W2048449755 countsByYear W20484497552018 @default.
- W2048449755 countsByYear W20484497552019 @default.
- W2048449755 countsByYear W20484497552020 @default.
- W2048449755 countsByYear W20484497552021 @default.
- W2048449755 countsByYear W20484497552022 @default.
- W2048449755 crossrefType "journal-article" @default.
- W2048449755 hasAuthorship W2048449755A5017236917 @default.
- W2048449755 hasAuthorship W2048449755A5043563326 @default.
- W2048449755 hasConcept C104779481 @default.
- W2048449755 hasConcept C127313418 @default.
- W2048449755 hasConcept C140205800 @default.
- W2048449755 hasConcept C155574463 @default.
- W2048449755 hasConcept C159985019 @default.
- W2048449755 hasConcept C17409809 @default.
- W2048449755 hasConcept C178790620 @default.
- W2048449755 hasConcept C185592680 @default.
- W2048449755 hasConcept C191897082 @default.
- W2048449755 hasConcept C192562407 @default.
- W2048449755 hasConcept C199289684 @default.
- W2048449755 hasConcept C2776921476 @default.
- W2048449755 hasConcept C2779698641 @default.
- W2048449755 hasConcept C2780026712 @default.
- W2048449755 hasConcept C518881349 @default.
- W2048449755 hasConcept C67236022 @default.
- W2048449755 hasConcept C89464430 @default.
- W2048449755 hasConceptScore W2048449755C104779481 @default.
- W2048449755 hasConceptScore W2048449755C127313418 @default.
- W2048449755 hasConceptScore W2048449755C140205800 @default.
- W2048449755 hasConceptScore W2048449755C155574463 @default.
- W2048449755 hasConceptScore W2048449755C159985019 @default.
- W2048449755 hasConceptScore W2048449755C17409809 @default.
- W2048449755 hasConceptScore W2048449755C178790620 @default.