Matches in SemOpenAlex for { <https://semopenalex.org/work/W2048462008> ?p ?o ?g. }
- W2048462008 endingPage "889" @default.
- W2048462008 startingPage "875" @default.
- W2048462008 abstract "Simple associative networks have many desirable properties, but are fundamentally limited by their inability to accurately capture complex relationships. This paper presents a solution significantly extending the abilities of associative networks by using an untrained dynamic reservoir as an input filter. The untrained reservoir provides complex dynamic transformations, and temporal integration, and can be viewed as a complex non-linear feature detector from which the associative network can learn. Typically reservoir systems utilize trained single layer perceptrons to produce desired output responses. However given that both single layer perceptions and simple associative learning have the same computational limitations, i.e. linear separation, they should perform similarly in terms of pattern recognition ability. Further to this the extensive psychological properties of simple associative networks and the lack of explicit supervision required for associative learning motivates this extension overcoming previous limitations. Finally, we demonstrate the resulting model in a robotic embodiment, learning sensorimotor contingencies, and matching a variety of psychological data." @default.
- W2048462008 created "2016-06-24" @default.
- W2048462008 creator A5077896647 @default.
- W2048462008 creator A5084897459 @default.
- W2048462008 date "2009-09-01" @default.
- W2048462008 modified "2023-09-27" @default.
- W2048462008 title "Dynamic liquid association: Complex learning without implausible guidance" @default.
- W2048462008 cites W1015831083 @default.
- W2048462008 cites W1514621373 @default.
- W2048462008 cites W1520335995 @default.
- W2048462008 cites W1528140509 @default.
- W2048462008 cites W1563088657 @default.
- W2048462008 cites W1577620534 @default.
- W2048462008 cites W1589086237 @default.
- W2048462008 cites W1605184067 @default.
- W2048462008 cites W160989634 @default.
- W2048462008 cites W1652032257 @default.
- W2048462008 cites W1867196520 @default.
- W2048462008 cites W1919767399 @default.
- W2048462008 cites W199411867 @default.
- W2048462008 cites W2032961878 @default.
- W2048462008 cites W2054217036 @default.
- W2048462008 cites W2054930781 @default.
- W2048462008 cites W2061230487 @default.
- W2048462008 cites W2063109360 @default.
- W2048462008 cites W2073257493 @default.
- W2048462008 cites W2086789740 @default.
- W2048462008 cites W2095350576 @default.
- W2048462008 cites W2103179919 @default.
- W2048462008 cites W2115271248 @default.
- W2048462008 cites W2122183751 @default.
- W2048462008 cites W2128084896 @default.
- W2048462008 cites W2131764799 @default.
- W2048462008 cites W2144219012 @default.
- W2048462008 cites W2146990855 @default.
- W2048462008 cites W2150354929 @default.
- W2048462008 cites W2154409655 @default.
- W2048462008 cites W2159110831 @default.
- W2048462008 cites W2161868780 @default.
- W2048462008 cites W2162019295 @default.
- W2048462008 cites W2165496678 @default.
- W2048462008 cites W22297218 @default.
- W2048462008 cites W2333799122 @default.
- W2048462008 cites W2501435946 @default.
- W2048462008 cites W3207342693 @default.
- W2048462008 cites W583107845 @default.
- W2048462008 cites W609092168 @default.
- W2048462008 cites W637551875 @default.
- W2048462008 cites W79667300 @default.
- W2048462008 doi "https://doi.org/10.1016/j.neunet.2008.10.008" @default.
- W2048462008 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/19117723" @default.
- W2048462008 hasPublicationYear "2009" @default.
- W2048462008 type Work @default.
- W2048462008 sameAs 2048462008 @default.
- W2048462008 citedByCount "9" @default.
- W2048462008 countsByYear W20484620082012 @default.
- W2048462008 countsByYear W20484620082014 @default.
- W2048462008 crossrefType "journal-article" @default.
- W2048462008 hasAuthorship W2048462008A5077896647 @default.
- W2048462008 hasAuthorship W2048462008A5084897459 @default.
- W2048462008 hasConcept C105795698 @default.
- W2048462008 hasConcept C106131492 @default.
- W2048462008 hasConcept C111472728 @default.
- W2048462008 hasConcept C119857082 @default.
- W2048462008 hasConcept C138885662 @default.
- W2048462008 hasConcept C142853389 @default.
- W2048462008 hasConcept C154945302 @default.
- W2048462008 hasConcept C15744967 @default.
- W2048462008 hasConcept C159423971 @default.
- W2048462008 hasConcept C165064840 @default.
- W2048462008 hasConcept C180747234 @default.
- W2048462008 hasConcept C202444582 @default.
- W2048462008 hasConcept C2776401178 @default.
- W2048462008 hasConcept C2780586882 @default.
- W2048462008 hasConcept C2983526489 @default.
- W2048462008 hasConcept C31972630 @default.
- W2048462008 hasConcept C33923547 @default.
- W2048462008 hasConcept C41008148 @default.
- W2048462008 hasConcept C41895202 @default.
- W2048462008 hasConcept C50644808 @default.
- W2048462008 hasConcept C542102704 @default.
- W2048462008 hasConcept C60908668 @default.
- W2048462008 hasConceptScore W2048462008C105795698 @default.
- W2048462008 hasConceptScore W2048462008C106131492 @default.
- W2048462008 hasConceptScore W2048462008C111472728 @default.
- W2048462008 hasConceptScore W2048462008C119857082 @default.
- W2048462008 hasConceptScore W2048462008C138885662 @default.
- W2048462008 hasConceptScore W2048462008C142853389 @default.
- W2048462008 hasConceptScore W2048462008C154945302 @default.
- W2048462008 hasConceptScore W2048462008C15744967 @default.
- W2048462008 hasConceptScore W2048462008C159423971 @default.
- W2048462008 hasConceptScore W2048462008C165064840 @default.
- W2048462008 hasConceptScore W2048462008C180747234 @default.
- W2048462008 hasConceptScore W2048462008C202444582 @default.
- W2048462008 hasConceptScore W2048462008C2776401178 @default.
- W2048462008 hasConceptScore W2048462008C2780586882 @default.
- W2048462008 hasConceptScore W2048462008C2983526489 @default.
- W2048462008 hasConceptScore W2048462008C31972630 @default.