Matches in SemOpenAlex for { <https://semopenalex.org/work/W2048470906> ?p ?o ?g. }
- W2048470906 endingPage "80" @default.
- W2048470906 startingPage "70" @default.
- W2048470906 abstract "Subset Simulation (SS) is a powerful tool, simple to implement and capable of solving a broad range of reliability analysis problems. In many cases however, SS leads to reliability predictions that exhibit a large variability due to the fact that the robustness of the SS prediction depends on the selection of an adequate width of the proposal distribution when applying the modified Metropolis algorithm. In this work a Neural Network-based SS (SS-NN) methodology is proposed in which NN are effectively trained over smaller sub-domains of the total random variable space which are generated progressively at each SS level by the modified Metropolis algorithm. NN are then used as robust meta-models in order to increase the efficiency of SS by increasing significantly the samples per SS level with a minimum additional computational effort. In the numerical examples considered, it is demonstrated that the training of a sufficiently accurate NN meta-model in the context of SS simulation leads to more robust estimations of the probability of failure both in terms of mean and variance of the estimator." @default.
- W2048470906 created "2016-06-24" @default.
- W2048470906 creator A5005508184 @default.
- W2048470906 creator A5006161716 @default.
- W2048470906 creator A5010593826 @default.
- W2048470906 creator A5078374061 @default.
- W2048470906 date "2012-06-01" @default.
- W2048470906 modified "2023-10-18" @default.
- W2048470906 title "Accelerated subset simulation with neural networks for reliability analysis" @default.
- W2048470906 cites W1973993824 @default.
- W2048470906 cites W1981567151 @default.
- W2048470906 cites W1999091229 @default.
- W2048470906 cites W2003732947 @default.
- W2048470906 cites W2015382923 @default.
- W2048470906 cites W2015399216 @default.
- W2048470906 cites W2023769053 @default.
- W2048470906 cites W2036713095 @default.
- W2048470906 cites W2043973777 @default.
- W2048470906 cites W2044555821 @default.
- W2048470906 cites W2045757691 @default.
- W2048470906 cites W2056760934 @default.
- W2048470906 cites W2065273135 @default.
- W2048470906 cites W2111051539 @default.
- W2048470906 cites W2114274878 @default.
- W2048470906 cites W2143908786 @default.
- W2048470906 doi "https://doi.org/10.1016/j.cma.2012.02.013" @default.
- W2048470906 hasPublicationYear "2012" @default.
- W2048470906 type Work @default.
- W2048470906 sameAs 2048470906 @default.
- W2048470906 citedByCount "156" @default.
- W2048470906 countsByYear W20484709062013 @default.
- W2048470906 countsByYear W20484709062014 @default.
- W2048470906 countsByYear W20484709062015 @default.
- W2048470906 countsByYear W20484709062016 @default.
- W2048470906 countsByYear W20484709062017 @default.
- W2048470906 countsByYear W20484709062018 @default.
- W2048470906 countsByYear W20484709062019 @default.
- W2048470906 countsByYear W20484709062020 @default.
- W2048470906 countsByYear W20484709062021 @default.
- W2048470906 countsByYear W20484709062022 @default.
- W2048470906 countsByYear W20484709062023 @default.
- W2048470906 crossrefType "journal-article" @default.
- W2048470906 hasAuthorship W2048470906A5005508184 @default.
- W2048470906 hasAuthorship W2048470906A5006161716 @default.
- W2048470906 hasAuthorship W2048470906A5010593826 @default.
- W2048470906 hasAuthorship W2048470906A5078374061 @default.
- W2048470906 hasConcept C104317684 @default.
- W2048470906 hasConcept C105795698 @default.
- W2048470906 hasConcept C11413529 @default.
- W2048470906 hasConcept C121332964 @default.
- W2048470906 hasConcept C121955636 @default.
- W2048470906 hasConcept C122123141 @default.
- W2048470906 hasConcept C126255220 @default.
- W2048470906 hasConcept C127413603 @default.
- W2048470906 hasConcept C144133560 @default.
- W2048470906 hasConcept C146978453 @default.
- W2048470906 hasConcept C151730666 @default.
- W2048470906 hasConcept C154945302 @default.
- W2048470906 hasConcept C163258240 @default.
- W2048470906 hasConcept C185429906 @default.
- W2048470906 hasConcept C185592680 @default.
- W2048470906 hasConcept C196083921 @default.
- W2048470906 hasConcept C204323151 @default.
- W2048470906 hasConcept C2779343474 @default.
- W2048470906 hasConcept C33923547 @default.
- W2048470906 hasConcept C41008148 @default.
- W2048470906 hasConcept C43214815 @default.
- W2048470906 hasConcept C50644808 @default.
- W2048470906 hasConcept C55493867 @default.
- W2048470906 hasConcept C62520636 @default.
- W2048470906 hasConcept C63479239 @default.
- W2048470906 hasConcept C86803240 @default.
- W2048470906 hasConceptScore W2048470906C104317684 @default.
- W2048470906 hasConceptScore W2048470906C105795698 @default.
- W2048470906 hasConceptScore W2048470906C11413529 @default.
- W2048470906 hasConceptScore W2048470906C121332964 @default.
- W2048470906 hasConceptScore W2048470906C121955636 @default.
- W2048470906 hasConceptScore W2048470906C122123141 @default.
- W2048470906 hasConceptScore W2048470906C126255220 @default.
- W2048470906 hasConceptScore W2048470906C127413603 @default.
- W2048470906 hasConceptScore W2048470906C144133560 @default.
- W2048470906 hasConceptScore W2048470906C146978453 @default.
- W2048470906 hasConceptScore W2048470906C151730666 @default.
- W2048470906 hasConceptScore W2048470906C154945302 @default.
- W2048470906 hasConceptScore W2048470906C163258240 @default.
- W2048470906 hasConceptScore W2048470906C185429906 @default.
- W2048470906 hasConceptScore W2048470906C185592680 @default.
- W2048470906 hasConceptScore W2048470906C196083921 @default.
- W2048470906 hasConceptScore W2048470906C204323151 @default.
- W2048470906 hasConceptScore W2048470906C2779343474 @default.
- W2048470906 hasConceptScore W2048470906C33923547 @default.
- W2048470906 hasConceptScore W2048470906C41008148 @default.
- W2048470906 hasConceptScore W2048470906C43214815 @default.
- W2048470906 hasConceptScore W2048470906C50644808 @default.
- W2048470906 hasConceptScore W2048470906C55493867 @default.
- W2048470906 hasConceptScore W2048470906C62520636 @default.
- W2048470906 hasConceptScore W2048470906C63479239 @default.
- W2048470906 hasConceptScore W2048470906C86803240 @default.