Matches in SemOpenAlex for { <https://semopenalex.org/work/W2048496001> ?p ?o ?g. }
- W2048496001 endingPage "331" @default.
- W2048496001 startingPage "316" @default.
- W2048496001 abstract "Several model types have already been developed to describe the boundary between growth and no growth conditions. In this article two types were thoroughly studied and compared, namely (i) the ordinary (linear) logistic regression model, i.e., with a polynomial on the right-hand side of the model equation (type I) and (ii) the (nonlinear) logistic regression model derived from a square root-type kinetic model (type II). The examination was carried out on the basis of the data described in Vermeulen et al. [Vermeulen, A., Gysemans, K.P.M., Bernaerts, K., Geeraerd, A.H., Van Impe, J.F., Debevere, J., Devlieghere, F., 2006-this issue. Influence of pH, water activity and acetic acid concentration on Listeria monocytogenes at 7 degrees C: data collection for the development of a growth/no growth model. International Journal of Food Microbiology. .]. These data sets consist of growth/no growth data for Listeria monocytogenes as a function of water activity (0.960-0.990), pH (5.0-6.0) and acetic acid percentage (0-0.8% (w/w)), both for a monoculture and a mixed strain culture. Numerous replicates, namely twenty, were performed at closely spaced conditions. In this way detailed information was obtained about the position of the interface and the transition zone between growth and no growth. The main questions investigated were (i) which model type performs best on the monoculture and the mixed strain data, (ii) are there differences between the growth/no growth interfaces of monocultures and mixed strain cultures, (iii) which parameter estimation approach works best for the type II models, and (iv) how sensitive is the performance of these models to the values of their nonlinear-appearing parameters. The results showed that both type I and II models performed well on the monoculture data with respect to goodness-of-fit and predictive power. The type I models were, however, more sensitive to anomalous data points. The situation was different for the mixed strain culture. In that case, the type II models could not describe the curvature in the growth/no growth interface which was reversed to the typical curvatures found for monocultures. This unusual curvature may originate from the fact that (i) an interface of a mixed strain culture can result from the superposition of the interfaces of the individual strains, or that (ii) only a narrow range of the growth/no growth interface was studied (the local trend can be different from the trend over a wider range). It was also observed that the best type II models were obtained with the flexible nonlinear logistic regression, although reasonably good models were obtained with the less flexible linear logistic regression with the nonlinear-appearing parameters fixed at experimentally determined values. Finally, it was found that for some of the nonlinear-appearing parameters, deviations from their experimentally determined values did not influence the model fit. This was probably caused by the fact that only a limited part of the growth/no growth interface was studied." @default.
- W2048496001 created "2016-06-24" @default.
- W2048496001 creator A5003764514 @default.
- W2048496001 creator A5005095744 @default.
- W2048496001 creator A5048588422 @default.
- W2048496001 creator A5058089703 @default.
- W2048496001 creator A5066015457 @default.
- W2048496001 creator A5075328589 @default.
- W2048496001 creator A5087769725 @default.
- W2048496001 date "2007-03-01" @default.
- W2048496001 modified "2023-10-14" @default.
- W2048496001 title "Exploring the performance of logistic regression model types on growth/no growth data of Listeria monocytogenes" @default.
- W2048496001 cites W101399645 @default.
- W2048496001 cites W1578941595 @default.
- W2048496001 cites W1999569857 @default.
- W2048496001 cites W2004790742 @default.
- W2048496001 cites W2013484419 @default.
- W2048496001 cites W2014328769 @default.
- W2048496001 cites W2017918953 @default.
- W2048496001 cites W2031076681 @default.
- W2048496001 cites W2033496267 @default.
- W2048496001 cites W2041354677 @default.
- W2048496001 cites W2047274781 @default.
- W2048496001 cites W2051170444 @default.
- W2048496001 cites W2057085815 @default.
- W2048496001 cites W2075936473 @default.
- W2048496001 cites W2076236170 @default.
- W2048496001 cites W2086766897 @default.
- W2048496001 cites W2089171530 @default.
- W2048496001 cites W2095925400 @default.
- W2048496001 cites W2099322199 @default.
- W2048496001 cites W2119975478 @default.
- W2048496001 cites W2120172405 @default.
- W2048496001 cites W2127929553 @default.
- W2048496001 cites W2130145205 @default.
- W2048496001 cites W2131019391 @default.
- W2048496001 cites W2172119488 @default.
- W2048496001 cites W2462471082 @default.
- W2048496001 cites W2506080609 @default.
- W2048496001 doi "https://doi.org/10.1016/j.ijfoodmicro.2006.09.026" @default.
- W2048496001 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/17239980" @default.
- W2048496001 hasPublicationYear "2007" @default.
- W2048496001 type Work @default.
- W2048496001 sameAs 2048496001 @default.
- W2048496001 citedByCount "51" @default.
- W2048496001 countsByYear W20484960012012 @default.
- W2048496001 countsByYear W20484960012014 @default.
- W2048496001 countsByYear W20484960012015 @default.
- W2048496001 countsByYear W20484960012016 @default.
- W2048496001 countsByYear W20484960012017 @default.
- W2048496001 countsByYear W20484960012018 @default.
- W2048496001 countsByYear W20484960012019 @default.
- W2048496001 countsByYear W20484960012020 @default.
- W2048496001 countsByYear W20484960012021 @default.
- W2048496001 countsByYear W20484960012022 @default.
- W2048496001 countsByYear W20484960012023 @default.
- W2048496001 crossrefType "journal-article" @default.
- W2048496001 hasAuthorship W2048496001A5003764514 @default.
- W2048496001 hasAuthorship W2048496001A5005095744 @default.
- W2048496001 hasAuthorship W2048496001A5048588422 @default.
- W2048496001 hasAuthorship W2048496001A5058089703 @default.
- W2048496001 hasAuthorship W2048496001A5066015457 @default.
- W2048496001 hasAuthorship W2048496001A5075328589 @default.
- W2048496001 hasAuthorship W2048496001A5087769725 @default.
- W2048496001 hasConcept C105795698 @default.
- W2048496001 hasConcept C134463574 @default.
- W2048496001 hasConcept C151956035 @default.
- W2048496001 hasConcept C152877465 @default.
- W2048496001 hasConcept C157005057 @default.
- W2048496001 hasConcept C180802074 @default.
- W2048496001 hasConcept C185592680 @default.
- W2048496001 hasConcept C18903297 @default.
- W2048496001 hasConcept C2781350384 @default.
- W2048496001 hasConcept C31903555 @default.
- W2048496001 hasConcept C33923547 @default.
- W2048496001 hasConcept C46889948 @default.
- W2048496001 hasConcept C48921125 @default.
- W2048496001 hasConcept C523546767 @default.
- W2048496001 hasConcept C54355233 @default.
- W2048496001 hasConcept C86803240 @default.
- W2048496001 hasConceptScore W2048496001C105795698 @default.
- W2048496001 hasConceptScore W2048496001C134463574 @default.
- W2048496001 hasConceptScore W2048496001C151956035 @default.
- W2048496001 hasConceptScore W2048496001C152877465 @default.
- W2048496001 hasConceptScore W2048496001C157005057 @default.
- W2048496001 hasConceptScore W2048496001C180802074 @default.
- W2048496001 hasConceptScore W2048496001C185592680 @default.
- W2048496001 hasConceptScore W2048496001C18903297 @default.
- W2048496001 hasConceptScore W2048496001C2781350384 @default.
- W2048496001 hasConceptScore W2048496001C31903555 @default.
- W2048496001 hasConceptScore W2048496001C33923547 @default.
- W2048496001 hasConceptScore W2048496001C46889948 @default.
- W2048496001 hasConceptScore W2048496001C48921125 @default.
- W2048496001 hasConceptScore W2048496001C523546767 @default.
- W2048496001 hasConceptScore W2048496001C54355233 @default.
- W2048496001 hasConceptScore W2048496001C86803240 @default.
- W2048496001 hasIssue "3" @default.
- W2048496001 hasLocation W20484960011 @default.