Matches in SemOpenAlex for { <https://semopenalex.org/work/W2048556039> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W2048556039 endingPage "152" @default.
- W2048556039 startingPage "141" @default.
- W2048556039 abstract "Segmenting multi-component microanalytical images consists in trying to find zones of the specimen with approximate homogeneous composition, representing different chemical phases. This can be done through pixel clustering. We first highlight some limitations of classical clustering algorithms (C-means and fuzzy C-means). Then, we describe a new algorithm we have contributed to develop: the Parzen-watersheds algorithm. This algorithm is based on the estimation of the probability density function of the whole data set in the feature space (through the Parzen approach) and its partitioning using a method inherited from mathematical morphology: the watersheds method. Next, we introduce a fuzzy version of this approach, where the pixels are characterized by their grades of membership to the different classes. Finally, we show how the definition of the grades of membership can be used to improve the results of clustering, through probabilistic relaxation in the image space. The different methods presented are illustrated through an example in the field of electron energy loss mapping, where four elemental maps are concentrated in a single chemical phase map." @default.
- W2048556039 created "2016-06-24" @default.
- W2048556039 creator A5026022809 @default.
- W2048556039 creator A5029963299 @default.
- W2048556039 creator A5034348902 @default.
- W2048556039 creator A5067660784 @default.
- W2048556039 date "2005-05-01" @default.
- W2048556039 modified "2023-09-26" @default.
- W2048556039 title "Advances in the segmentation of multi-component microanalytical images" @default.
- W2048556039 cites W1502098475 @default.
- W2048556039 cites W1561414385 @default.
- W2048556039 cites W1599786999 @default.
- W2048556039 cites W1972756286 @default.
- W2048556039 cites W1979622972 @default.
- W2048556039 cites W1995945562 @default.
- W2048556039 cites W2015505537 @default.
- W2048556039 cites W2055625808 @default.
- W2048556039 cites W2071636086 @default.
- W2048556039 cites W2091664768 @default.
- W2048556039 cites W2118020555 @default.
- W2048556039 cites W2129469290 @default.
- W2048556039 cites W2130771653 @default.
- W2048556039 cites W2752885492 @default.
- W2048556039 cites W3015571647 @default.
- W2048556039 doi "https://doi.org/10.1016/j.ultramic.2004.11.005" @default.
- W2048556039 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/15774275" @default.
- W2048556039 hasPublicationYear "2005" @default.
- W2048556039 type Work @default.
- W2048556039 sameAs 2048556039 @default.
- W2048556039 citedByCount "9" @default.
- W2048556039 countsByYear W20485560392013 @default.
- W2048556039 countsByYear W20485560392014 @default.
- W2048556039 countsByYear W20485560392016 @default.
- W2048556039 countsByYear W20485560392020 @default.
- W2048556039 crossrefType "journal-article" @default.
- W2048556039 hasAuthorship W2048556039A5026022809 @default.
- W2048556039 hasAuthorship W2048556039A5029963299 @default.
- W2048556039 hasAuthorship W2048556039A5034348902 @default.
- W2048556039 hasAuthorship W2048556039A5067660784 @default.
- W2048556039 hasConcept C104047586 @default.
- W2048556039 hasConcept C121332964 @default.
- W2048556039 hasConcept C124504099 @default.
- W2048556039 hasConcept C153180895 @default.
- W2048556039 hasConcept C154945302 @default.
- W2048556039 hasConcept C160633673 @default.
- W2048556039 hasConcept C168167062 @default.
- W2048556039 hasConcept C17212007 @default.
- W2048556039 hasConcept C41008148 @default.
- W2048556039 hasConcept C44859942 @default.
- W2048556039 hasConcept C49937458 @default.
- W2048556039 hasConcept C58166 @default.
- W2048556039 hasConcept C73555534 @default.
- W2048556039 hasConcept C89600930 @default.
- W2048556039 hasConcept C97355855 @default.
- W2048556039 hasConceptScore W2048556039C104047586 @default.
- W2048556039 hasConceptScore W2048556039C121332964 @default.
- W2048556039 hasConceptScore W2048556039C124504099 @default.
- W2048556039 hasConceptScore W2048556039C153180895 @default.
- W2048556039 hasConceptScore W2048556039C154945302 @default.
- W2048556039 hasConceptScore W2048556039C160633673 @default.
- W2048556039 hasConceptScore W2048556039C168167062 @default.
- W2048556039 hasConceptScore W2048556039C17212007 @default.
- W2048556039 hasConceptScore W2048556039C41008148 @default.
- W2048556039 hasConceptScore W2048556039C44859942 @default.
- W2048556039 hasConceptScore W2048556039C49937458 @default.
- W2048556039 hasConceptScore W2048556039C58166 @default.
- W2048556039 hasConceptScore W2048556039C73555534 @default.
- W2048556039 hasConceptScore W2048556039C89600930 @default.
- W2048556039 hasConceptScore W2048556039C97355855 @default.
- W2048556039 hasIssue "2" @default.
- W2048556039 hasLocation W20485560391 @default.
- W2048556039 hasLocation W20485560392 @default.
- W2048556039 hasOpenAccess W2048556039 @default.
- W2048556039 hasPrimaryLocation W20485560391 @default.
- W2048556039 hasRelatedWork W2005476934 @default.
- W2048556039 hasRelatedWork W2006443041 @default.
- W2048556039 hasRelatedWork W2136476704 @default.
- W2048556039 hasRelatedWork W2151600032 @default.
- W2048556039 hasRelatedWork W2739874619 @default.
- W2048556039 hasRelatedWork W2897195263 @default.
- W2048556039 hasRelatedWork W2907667403 @default.
- W2048556039 hasRelatedWork W3117032475 @default.
- W2048556039 hasRelatedWork W3169504557 @default.
- W2048556039 hasRelatedWork W2106595108 @default.
- W2048556039 hasVolume "103" @default.
- W2048556039 isParatext "false" @default.
- W2048556039 isRetracted "false" @default.
- W2048556039 magId "2048556039" @default.
- W2048556039 workType "article" @default.