Matches in SemOpenAlex for { <https://semopenalex.org/work/W2048604676> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2048604676 endingPage "2404" @default.
- W2048604676 startingPage "2391" @default.
- W2048604676 abstract "Data-driven prognostics based on sensor or historical test data have become appropriate prediction means in prognostics and health management (PHM) application. However, most traditional data-driven prognostics methods are off-line which would be seriously limited in many PHM systems needed on-line predicting or real-time processing. Furthermore, even in some on-line prediction algorithms such as Online Support Vector Regression (Online SVR) and Incremental learning algorithm, there are conflicts and trade-offs between prediction efficiency and accuracy. Therefore, in different PHM applications, prognostics algorithms should be on-line, flexible and adaptive to balance the prediction efficiency and accuracy. An on-line adaptive data-driven prognostics strategy is proposed with five various optimized on-line prediction algorithms based on Online SVR. These five algorithms are improved with kernel combination and sample reduction to realize higher precision and efficiency. These algorithms can achieve more accurate results by data pre-processing and model optimization, moreover, faster operating speed and lower computational complexity can be obtained by optimization of training process with on-line data reduction. With these different improved Online SVR methods, varies of prediction with different precision and efficiency demands could be fulfilled by an adaptive strategy. To evaluate the proposed prognostics strategy, we have executed simulation experiments with Tennessee Eastman (TE) process. In addition, the prediction strategies are also applied and evaluated by traffic mobile communication data from China Mobile Communications Corporation Heilongjiang Co., Ltd. Experiments and test results prove its effectiveness and confirm that the algorithms can be effectively applied to the on-line status prediction with increased performance in both precision and efficiency." @default.
- W2048604676 created "2016-06-24" @default.
- W2048604676 creator A5010356589 @default.
- W2048604676 creator A5019735827 @default.
- W2048604676 creator A5050960882 @default.
- W2048604676 creator A5090076224 @default.
- W2048604676 date "2013-10-01" @default.
- W2048604676 modified "2023-09-24" @default.
- W2048604676 title "Multiple optimized online support vector regression for adaptive time series prediction" @default.
- W2048604676 cites W1964357740 @default.
- W2048604676 cites W1977777281 @default.
- W2048604676 cites W2000743683 @default.
- W2048604676 cites W2004186751 @default.
- W2048604676 cites W2012346040 @default.
- W2048604676 cites W2033351162 @default.
- W2048604676 cites W2044885069 @default.
- W2048604676 cites W2054570131 @default.
- W2048604676 cites W2055873761 @default.
- W2048604676 cites W2058196021 @default.
- W2048604676 cites W2071867235 @default.
- W2048604676 cites W2078382802 @default.
- W2048604676 cites W2088378662 @default.
- W2048604676 cites W2090543426 @default.
- W2048604676 cites W2098263691 @default.
- W2048604676 cites W2107818255 @default.
- W2048604676 cites W2123146227 @default.
- W2048604676 cites W2125520373 @default.
- W2048604676 cites W2127342270 @default.
- W2048604676 cites W2138882494 @default.
- W2048604676 cites W2150621701 @default.
- W2048604676 cites W2153290280 @default.
- W2048604676 cites W3104323038 @default.
- W2048604676 doi "https://doi.org/10.1016/j.measurement.2013.04.033" @default.
- W2048604676 hasPublicationYear "2013" @default.
- W2048604676 type Work @default.
- W2048604676 sameAs 2048604676 @default.
- W2048604676 citedByCount "18" @default.
- W2048604676 countsByYear W20486046762014 @default.
- W2048604676 countsByYear W20486046762015 @default.
- W2048604676 countsByYear W20486046762016 @default.
- W2048604676 countsByYear W20486046762017 @default.
- W2048604676 countsByYear W20486046762018 @default.
- W2048604676 countsByYear W20486046762019 @default.
- W2048604676 countsByYear W20486046762020 @default.
- W2048604676 countsByYear W20486046762021 @default.
- W2048604676 crossrefType "journal-article" @default.
- W2048604676 hasAuthorship W2048604676A5010356589 @default.
- W2048604676 hasAuthorship W2048604676A5019735827 @default.
- W2048604676 hasAuthorship W2048604676A5050960882 @default.
- W2048604676 hasAuthorship W2048604676A5090076224 @default.
- W2048604676 hasConcept C111919701 @default.
- W2048604676 hasConcept C114614502 @default.
- W2048604676 hasConcept C119857082 @default.
- W2048604676 hasConcept C12267149 @default.
- W2048604676 hasConcept C124101348 @default.
- W2048604676 hasConcept C127413603 @default.
- W2048604676 hasConcept C129364497 @default.
- W2048604676 hasConcept C154945302 @default.
- W2048604676 hasConcept C33923547 @default.
- W2048604676 hasConcept C41008148 @default.
- W2048604676 hasConcept C45804977 @default.
- W2048604676 hasConcept C74193536 @default.
- W2048604676 hasConcept C98045186 @default.
- W2048604676 hasConceptScore W2048604676C111919701 @default.
- W2048604676 hasConceptScore W2048604676C114614502 @default.
- W2048604676 hasConceptScore W2048604676C119857082 @default.
- W2048604676 hasConceptScore W2048604676C12267149 @default.
- W2048604676 hasConceptScore W2048604676C124101348 @default.
- W2048604676 hasConceptScore W2048604676C127413603 @default.
- W2048604676 hasConceptScore W2048604676C129364497 @default.
- W2048604676 hasConceptScore W2048604676C154945302 @default.
- W2048604676 hasConceptScore W2048604676C33923547 @default.
- W2048604676 hasConceptScore W2048604676C41008148 @default.
- W2048604676 hasConceptScore W2048604676C45804977 @default.
- W2048604676 hasConceptScore W2048604676C74193536 @default.
- W2048604676 hasConceptScore W2048604676C98045186 @default.
- W2048604676 hasFunder F4320336024 @default.
- W2048604676 hasIssue "8" @default.
- W2048604676 hasLocation W20486046761 @default.
- W2048604676 hasOpenAccess W2048604676 @default.
- W2048604676 hasPrimaryLocation W20486046761 @default.
- W2048604676 hasRelatedWork W1996541855 @default.
- W2048604676 hasRelatedWork W2101819884 @default.
- W2048604676 hasRelatedWork W2937631562 @default.
- W2048604676 hasRelatedWork W2979979539 @default.
- W2048604676 hasRelatedWork W3136979370 @default.
- W2048604676 hasRelatedWork W3194539120 @default.
- W2048604676 hasRelatedWork W3195168932 @default.
- W2048604676 hasRelatedWork W4205958290 @default.
- W2048604676 hasRelatedWork W4320483443 @default.
- W2048604676 hasRelatedWork W4361795583 @default.
- W2048604676 hasVolume "46" @default.
- W2048604676 isParatext "false" @default.
- W2048604676 isRetracted "false" @default.
- W2048604676 magId "2048604676" @default.
- W2048604676 workType "article" @default.