Matches in SemOpenAlex for { <https://semopenalex.org/work/W2048621636> ?p ?o ?g. }
- W2048621636 abstract "Ancient manuscripts constitute a primary carrier of cultural heritage globally, and they are currently being intensively digitized all over the world to ensure their preservation, and, ultimately, the wide accessibility of their content. Critical to this research process are the legibility of the documents in image form, and access to live texts. Several state-of-the-art methods and approaches have been proposed and developed to address the challenges associated with processing these manuscripts. However, there is a huge amount of data involved, and also the high cost and scarcity of human expert feedback and reference data call for the development of fundamental approaches that encompass all these aspects in an objective and tractable manner. In this paper, we propose one such approach, which is a novel framework for the computational pattern analysis of ancient manuscripts that is data-driven, multilevel, self-sustaining, and learning-based, and takes advantage of the large quantities of unprocessed data available. Unlike many approaches, which fast-forward to the processing and analysis of feature vectors, our innovative framework represents a new perspective on the task, which starts from ground zero of the problem, which is the definition of objects. In addition, it leverages the data-driven mining of relations among objects to discover hidden but persistent links between them. The problem is addressed at three main levels. At the lowest level, that of images, it tackles automatic, data-driven enhancement and restoration of document images using spatial, spectral, sparse, and graph-based representations of visual objects. At the second level, which is transliteration, directed graphical models, HMMs, Undirected Random Fields, and spatial relations models are used to extract the live text of manuscript images, which reduces dependency on human experts. Finally, at the highest level, that of network analysis of the relations among objects (from patches and words to manuscripts and writers) involves the search for `social networks' linking manuscripts. Considering this approach under the umbrella of Visual Language Processing (VLP), we hope that it will be further enriched by the research community, in the form of new insights and approaches contributed at the various levels." @default.
- W2048621636 created "2016-06-24" @default.
- W2048621636 creator A5015410834 @default.
- W2048621636 creator A5048300872 @default.
- W2048621636 creator A5053495468 @default.
- W2048621636 date "2013-11-01" @default.
- W2048621636 modified "2023-10-02" @default.
- W2048621636 title "Visual language processing (VLP) of ancient manuscripts: Converting collections to windows on the past" @default.
- W2048621636 cites W1528367647 @default.
- W2048621636 cites W1588663000 @default.
- W2048621636 cites W1965285802 @default.
- W2048621636 cites W1966818575 @default.
- W2048621636 cites W1968734870 @default.
- W2048621636 cites W1974830835 @default.
- W2048621636 cites W1975579313 @default.
- W2048621636 cites W1991181922 @default.
- W2048621636 cites W2007163663 @default.
- W2048621636 cites W2008158986 @default.
- W2048621636 cites W2008679785 @default.
- W2048621636 cites W2024093103 @default.
- W2048621636 cites W2037429745 @default.
- W2048621636 cites W2050138027 @default.
- W2048621636 cites W2053107662 @default.
- W2048621636 cites W2069221010 @default.
- W2048621636 cites W2071203921 @default.
- W2048621636 cites W2072610689 @default.
- W2048621636 cites W2072731835 @default.
- W2048621636 cites W2076585623 @default.
- W2048621636 cites W2077125417 @default.
- W2048621636 cites W2083609718 @default.
- W2048621636 cites W2092858021 @default.
- W2048621636 cites W2097357985 @default.
- W2048621636 cites W2097713019 @default.
- W2048621636 cites W2105408040 @default.
- W2048621636 cites W2106382595 @default.
- W2048621636 cites W2106986062 @default.
- W2048621636 cites W2116447720 @default.
- W2048621636 cites W2124237011 @default.
- W2048621636 cites W2128544444 @default.
- W2048621636 cites W2130184048 @default.
- W2048621636 cites W2132450919 @default.
- W2048621636 cites W2139801919 @default.
- W2048621636 cites W2143657265 @default.
- W2048621636 cites W2153070015 @default.
- W2048621636 cites W2153564597 @default.
- W2048621636 cites W2158139315 @default.
- W2048621636 cites W2161369007 @default.
- W2048621636 cites W2172275395 @default.
- W2048621636 cites W1980704598 @default.
- W2048621636 cites W2739594115 @default.
- W2048621636 doi "https://doi.org/10.1109/ieeegcc.2013.6705813" @default.
- W2048621636 hasPublicationYear "2013" @default.
- W2048621636 type Work @default.
- W2048621636 sameAs 2048621636 @default.
- W2048621636 citedByCount "1" @default.
- W2048621636 countsByYear W20486216362017 @default.
- W2048621636 crossrefType "proceedings-article" @default.
- W2048621636 hasAuthorship W2048621636A5015410834 @default.
- W2048621636 hasAuthorship W2048621636A5048300872 @default.
- W2048621636 hasAuthorship W2048621636A5053495468 @default.
- W2048621636 hasConcept C111919701 @default.
- W2048621636 hasConcept C142362112 @default.
- W2048621636 hasConcept C153349607 @default.
- W2048621636 hasConcept C154945302 @default.
- W2048621636 hasConcept C162324750 @default.
- W2048621636 hasConcept C166957645 @default.
- W2048621636 hasConcept C187736073 @default.
- W2048621636 hasConcept C205649164 @default.
- W2048621636 hasConcept C23123220 @default.
- W2048621636 hasConcept C2522767166 @default.
- W2048621636 hasConcept C2779332521 @default.
- W2048621636 hasConcept C2780451532 @default.
- W2048621636 hasConcept C41008148 @default.
- W2048621636 hasConcept C60671577 @default.
- W2048621636 hasConcept C98045186 @default.
- W2048621636 hasConceptScore W2048621636C111919701 @default.
- W2048621636 hasConceptScore W2048621636C142362112 @default.
- W2048621636 hasConceptScore W2048621636C153349607 @default.
- W2048621636 hasConceptScore W2048621636C154945302 @default.
- W2048621636 hasConceptScore W2048621636C162324750 @default.
- W2048621636 hasConceptScore W2048621636C166957645 @default.
- W2048621636 hasConceptScore W2048621636C187736073 @default.
- W2048621636 hasConceptScore W2048621636C205649164 @default.
- W2048621636 hasConceptScore W2048621636C23123220 @default.
- W2048621636 hasConceptScore W2048621636C2522767166 @default.
- W2048621636 hasConceptScore W2048621636C2779332521 @default.
- W2048621636 hasConceptScore W2048621636C2780451532 @default.
- W2048621636 hasConceptScore W2048621636C41008148 @default.
- W2048621636 hasConceptScore W2048621636C60671577 @default.
- W2048621636 hasConceptScore W2048621636C98045186 @default.
- W2048621636 hasLocation W20486216361 @default.
- W2048621636 hasOpenAccess W2048621636 @default.
- W2048621636 hasPrimaryLocation W20486216361 @default.
- W2048621636 hasRelatedWork W124370411 @default.
- W2048621636 hasRelatedWork W1900395391 @default.
- W2048621636 hasRelatedWork W1926561698 @default.
- W2048621636 hasRelatedWork W2009788881 @default.
- W2048621636 hasRelatedWork W2100658322 @default.
- W2048621636 hasRelatedWork W2264301372 @default.
- W2048621636 hasRelatedWork W2285802351 @default.