Matches in SemOpenAlex for { <https://semopenalex.org/work/W2048650189> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2048650189 endingPage "824" @default.
- W2048650189 startingPage "807" @default.
- W2048650189 abstract "We suggest a way of reducing the very high dimension of a functional predictor, X, to a low number of dimensions chosen so as to give the best predictive performance. Specifically, if X is observed on a fine grid of design points t 1 ,...,t r , we propose a method for choosing a small subset of these, say t i1 ,..., t ik , to optimize the prediction of a response variable, Y. The values t ij are referred to as the most predictive design points, or covariates, for a given value of k, and are computed using information contained in a set of independent observations (X i , Y i ) of (X, Y). The algorithm is based on local linear regression, and calculations can be accelerated using linear regression to preselect the design points. Boosting can be employed to further improve the predictive performance. We illustrate the usefulness of our ideas through simulations and examples drawn from chemometrics, and we develop theoretical arguments showing that the methodology can be applied successfully in a range of settings." @default.
- W2048650189 created "2016-06-24" @default.
- W2048650189 creator A5041133445 @default.
- W2048650189 creator A5067513618 @default.
- W2048650189 creator A5077005608 @default.
- W2048650189 date "2010-12-01" @default.
- W2048650189 modified "2023-10-16" @default.
- W2048650189 title "Most-predictive design points for functional data predictors" @default.
- W2048650189 cites W1562221892 @default.
- W2048650189 cites W1966088070 @default.
- W2048650189 cites W1968263491 @default.
- W2048650189 cites W1975285668 @default.
- W2048650189 cites W1976834773 @default.
- W2048650189 cites W1985896026 @default.
- W2048650189 cites W1986372969 @default.
- W2048650189 cites W2014604981 @default.
- W2048650189 cites W2043108205 @default.
- W2048650189 cites W2048826713 @default.
- W2048650189 cites W2059688250 @default.
- W2048650189 cites W2063978378 @default.
- W2048650189 cites W2071077655 @default.
- W2048650189 cites W2084382465 @default.
- W2048650189 cites W2163352133 @default.
- W2048650189 cites W2168175751 @default.
- W2048650189 cites W2952563653 @default.
- W2048650189 cites W3100683829 @default.
- W2048650189 cites W4240385847 @default.
- W2048650189 cites W4244398791 @default.
- W2048650189 cites W4245385762 @default.
- W2048650189 doi "https://doi.org/10.1093/biomet/asq058" @default.
- W2048650189 hasPublicationYear "2010" @default.
- W2048650189 type Work @default.
- W2048650189 sameAs 2048650189 @default.
- W2048650189 citedByCount "83" @default.
- W2048650189 countsByYear W20486501892012 @default.
- W2048650189 countsByYear W20486501892013 @default.
- W2048650189 countsByYear W20486501892014 @default.
- W2048650189 countsByYear W20486501892015 @default.
- W2048650189 countsByYear W20486501892016 @default.
- W2048650189 countsByYear W20486501892017 @default.
- W2048650189 countsByYear W20486501892018 @default.
- W2048650189 countsByYear W20486501892019 @default.
- W2048650189 countsByYear W20486501892020 @default.
- W2048650189 countsByYear W20486501892021 @default.
- W2048650189 countsByYear W20486501892022 @default.
- W2048650189 countsByYear W20486501892023 @default.
- W2048650189 crossrefType "journal-article" @default.
- W2048650189 hasAuthorship W2048650189A5041133445 @default.
- W2048650189 hasAuthorship W2048650189A5067513618 @default.
- W2048650189 hasAuthorship W2048650189A5077005608 @default.
- W2048650189 hasConcept C105795698 @default.
- W2048650189 hasConcept C149782125 @default.
- W2048650189 hasConcept C33923547 @default.
- W2048650189 hasConceptScore W2048650189C105795698 @default.
- W2048650189 hasConceptScore W2048650189C149782125 @default.
- W2048650189 hasConceptScore W2048650189C33923547 @default.
- W2048650189 hasIssue "4" @default.
- W2048650189 hasLocation W20486501891 @default.
- W2048650189 hasLocation W20486501892 @default.
- W2048650189 hasLocation W20486501893 @default.
- W2048650189 hasOpenAccess W2048650189 @default.
- W2048650189 hasPrimaryLocation W20486501891 @default.
- W2048650189 hasRelatedWork W1979597421 @default.
- W2048650189 hasRelatedWork W2002893565 @default.
- W2048650189 hasRelatedWork W2007980826 @default.
- W2048650189 hasRelatedWork W2061531152 @default.
- W2048650189 hasRelatedWork W2119158312 @default.
- W2048650189 hasRelatedWork W2552050053 @default.
- W2048650189 hasRelatedWork W3002753104 @default.
- W2048650189 hasRelatedWork W3021457118 @default.
- W2048650189 hasRelatedWork W4225152035 @default.
- W2048650189 hasRelatedWork W4245490552 @default.
- W2048650189 hasVolume "97" @default.
- W2048650189 isParatext "false" @default.
- W2048650189 isRetracted "false" @default.
- W2048650189 magId "2048650189" @default.
- W2048650189 workType "article" @default.