Matches in SemOpenAlex for { <https://semopenalex.org/work/W2048656426> ?p ?o ?g. }
- W2048656426 endingPage "171" @default.
- W2048656426 startingPage "161" @default.
- W2048656426 abstract "Abstract— All groups of chondritic meteorites contain discrete grains of forsteritic olivine with FeO contents below 1 wt% and high concentrations of refractory elements such as Ca, Al, and Ti. Ten such grains (52 to 754 μg) with minor amounts of adhering matrix were separated from the Allende meteorite. After bulk chemical analysis by instrumental neutron activation analysis (INAA), some samples were analyzed with an electron microprobe and some with an ion microprobe. Matrix that accreted to the forsterite grains has a well-defined unique composition, different from average Allende matrix in having higher Cr and lower Ni and Co contents, which implies limited mixing of Allende matrix. All samples have approximately chondritic relative abundances of refractory elements Ca, Al, Sc, and rare-earth elements (REE), although some of these elements, such as Al, do not quantitatively reside in forsterite; whereas others (e.g., Ca) are intrinsic to forsterite. The chondritic refractory element ratios in bulk samples, the generally high abundance level of refractory elements, and the presence of Ca-Al-Ti-rich glass inclusions suggest a genetic relationship of refractory condensates with forsteritic olivine. The Ca-Al-Ti-rich glasses may have acted as nuclei for forsterite condensation. Arguments are presented that exclude an origin of refractory forsterite by crystallization from melts with compositions characteristic of Allende chondrules: (a) All forsterite grains have CaO contents between 0.5 and 0.7 wt% with no apparent zoning, requiring voluminous parental melts with 18 to 20 wt% CaO, far above the average CaO content of Allende chondrules. Similar arguments apply to Al contents. (b) The low FeO content of refractory forsterite of 0.2-0.4 wt% imposes an upper limit of ∼1 wt% of FeO on the parental melt, too low for ordinary and carbonaceous chondrule melts, (c) The Mn contents of refractory forsterites are between 30 to 40 ppm. This is at least one order of magnitude below the Mn content of chondrule olivines in all classes of meteorites. The observed Mn contents of refractory forsterite are much too low for equilibrium between olivine and melts of chondrule composition, (d) As shown earlier, refractory forsterites have O-isotopic compositions different from chondrules (Weinbruch et al., 1993a). Refractory olivines in carbonaceous chondrites are found in matrix and in chondrules. The compositional similarity of both types was taken to indicate that all refractory forsterites formed inside chondrules (e.g., Jones, 1992). As refractory forsterite cannot have formed by crystallization from chondrule melts, we conclude that refractory forsterite from chondrules are relic grains that survived chondrule melting and probably formed in the same way as refractory forsterite enclosed in matrix. We favor an origin of refractory forsterite by condensation from an oxidized nebular gas." @default.
- W2048656426 created "2016-06-24" @default.
- W2048656426 creator A5006757776 @default.
- W2048656426 creator A5080489730 @default.
- W2048656426 creator A5083650358 @default.
- W2048656426 date "2000-01-01" @default.
- W2048656426 modified "2023-10-02" @default.
- W2048656426 title "Refractory forsterite in primitive meteorites: Condensates from the solar nebula?" @default.
- W2048656426 cites W1494701607 @default.
- W2048656426 cites W1977890241 @default.
- W2048656426 cites W1979323514 @default.
- W2048656426 cites W1979487371 @default.
- W2048656426 cites W1980192025 @default.
- W2048656426 cites W1980853447 @default.
- W2048656426 cites W1989252877 @default.
- W2048656426 cites W1999326810 @default.
- W2048656426 cites W2001346605 @default.
- W2048656426 cites W2003758035 @default.
- W2048656426 cites W2004002784 @default.
- W2048656426 cites W2004850675 @default.
- W2048656426 cites W2008688054 @default.
- W2048656426 cites W2009922237 @default.
- W2048656426 cites W2010328184 @default.
- W2048656426 cites W2027862110 @default.
- W2048656426 cites W2028282674 @default.
- W2048656426 cites W2032150840 @default.
- W2048656426 cites W2032273550 @default.
- W2048656426 cites W2037669719 @default.
- W2048656426 cites W2039772889 @default.
- W2048656426 cites W2040521692 @default.
- W2048656426 cites W2054780676 @default.
- W2048656426 cites W2059816635 @default.
- W2048656426 cites W2065123560 @default.
- W2048656426 cites W2072351392 @default.
- W2048656426 cites W2074962860 @default.
- W2048656426 cites W2075305921 @default.
- W2048656426 cites W2075820190 @default.
- W2048656426 cites W2077223551 @default.
- W2048656426 cites W2083844821 @default.
- W2048656426 cites W2088644964 @default.
- W2048656426 cites W2090520000 @default.
- W2048656426 cites W2094598311 @default.
- W2048656426 cites W2151530029 @default.
- W2048656426 cites W2156528496 @default.
- W2048656426 cites W2158194328 @default.
- W2048656426 cites W2170016232 @default.
- W2048656426 cites W2320948023 @default.
- W2048656426 cites W2514160738 @default.
- W2048656426 cites W3044835684 @default.
- W2048656426 doi "https://doi.org/10.1111/j.1945-5100.2000.tb01983.x" @default.
- W2048656426 hasPublicationYear "2000" @default.
- W2048656426 type Work @default.
- W2048656426 sameAs 2048656426 @default.
- W2048656426 citedByCount "61" @default.
- W2048656426 countsByYear W20486564262012 @default.
- W2048656426 countsByYear W20486564262013 @default.
- W2048656426 countsByYear W20486564262014 @default.
- W2048656426 countsByYear W20486564262017 @default.
- W2048656426 countsByYear W20486564262018 @default.
- W2048656426 countsByYear W20486564262019 @default.
- W2048656426 countsByYear W20486564262020 @default.
- W2048656426 countsByYear W20486564262021 @default.
- W2048656426 countsByYear W20486564262022 @default.
- W2048656426 countsByYear W20486564262023 @default.
- W2048656426 crossrefType "journal-article" @default.
- W2048656426 hasAuthorship W2048656426A5006757776 @default.
- W2048656426 hasAuthorship W2048656426A5080489730 @default.
- W2048656426 hasAuthorship W2048656426A5083650358 @default.
- W2048656426 hasBestOaLocation W20486564261 @default.
- W2048656426 hasConcept C113196181 @default.
- W2048656426 hasConcept C116862484 @default.
- W2048656426 hasConcept C121332964 @default.
- W2048656426 hasConcept C127313418 @default.
- W2048656426 hasConcept C130635790 @default.
- W2048656426 hasConcept C138411078 @default.
- W2048656426 hasConcept C142424586 @default.
- W2048656426 hasConcept C165783156 @default.
- W2048656426 hasConcept C178715517 @default.
- W2048656426 hasConcept C185592680 @default.
- W2048656426 hasConcept C191897082 @default.
- W2048656426 hasConcept C192562407 @default.
- W2048656426 hasConcept C199289684 @default.
- W2048656426 hasConcept C2780364934 @default.
- W2048656426 hasConcept C2781137303 @default.
- W2048656426 hasConcept C43617362 @default.
- W2048656426 hasConcept C87355193 @default.
- W2048656426 hasConceptScore W2048656426C113196181 @default.
- W2048656426 hasConceptScore W2048656426C116862484 @default.
- W2048656426 hasConceptScore W2048656426C121332964 @default.
- W2048656426 hasConceptScore W2048656426C127313418 @default.
- W2048656426 hasConceptScore W2048656426C130635790 @default.
- W2048656426 hasConceptScore W2048656426C138411078 @default.
- W2048656426 hasConceptScore W2048656426C142424586 @default.
- W2048656426 hasConceptScore W2048656426C165783156 @default.
- W2048656426 hasConceptScore W2048656426C178715517 @default.
- W2048656426 hasConceptScore W2048656426C185592680 @default.
- W2048656426 hasConceptScore W2048656426C191897082 @default.
- W2048656426 hasConceptScore W2048656426C192562407 @default.