Matches in SemOpenAlex for { <https://semopenalex.org/work/W2048658568> ?p ?o ?g. }
- W2048658568 abstract "During recent decades, artificial intelligence has been employed as a powerful tool for identification of complex industrial systems with nonlinear dynamics, such as gas turbines (GT). In this study, a methodology based on artificial neural network (ANN) techniques was developed for offline system identification of a low-power gas turbine. The processed data was obtained from a SIMULINK model of a gas turbine in matlab environment. A comprehensive computer program code was generated and run in matlab for creating and training different ANN models with feed-forward multilayer perceptron (MLP) structure. The code consisted of various training functions, different number of neurons as well as a variety of transfer (activation) functions for hidden and output layers of the network. It was shown that the optimal model for a two-layer network with MLP structure consisted of 20 neurons in its hidden layer and used trainlm as its training function, as well as tansig and logsid as its transfer functions for the hidden and output layers. It was also observed that trainlm has a superior performance in terms of minimum mean squared error (MSE) compared with each of the other training functions. The resulting model could predict performance of the system with high accuracy. The methodology provides a comprehensive view of the performance of over 18,720 ANN models for system identification of the single-shaft gas turbine. One can use the optimal ANN model from this study when training from real data obtained from this type of GT. This is particularly useful when real data is only available over a limited operational range." @default.
- W2048658568 created "2016-06-24" @default.
- W2048658568 creator A5043292434 @default.
- W2048658568 creator A5051122758 @default.
- W2048658568 creator A5051167783 @default.
- W2048658568 creator A5058334280 @default.
- W2048658568 date "2013-07-31" @default.
- W2048658568 modified "2023-09-30" @default.
- W2048658568 title "Artificial Neural Network–Based System Identification for a Single-Shaft Gas Turbine" @default.
- W2048658568 cites W2004196017 @default.
- W2048658568 cites W2010568068 @default.
- W2048658568 cites W2047658408 @default.
- W2048658568 cites W2049143376 @default.
- W2048658568 cites W2056458466 @default.
- W2048658568 cites W2088144862 @default.
- W2048658568 cites W2089955789 @default.
- W2048658568 cites W2103496339 @default.
- W2048658568 cites W2133791637 @default.
- W2048658568 cites W2136048980 @default.
- W2048658568 cites W2144264770 @default.
- W2048658568 cites W2801361648 @default.
- W2048658568 doi "https://doi.org/10.1115/1.4024735" @default.
- W2048658568 hasPublicationYear "2013" @default.
- W2048658568 type Work @default.
- W2048658568 sameAs 2048658568 @default.
- W2048658568 citedByCount "46" @default.
- W2048658568 countsByYear W20486585682014 @default.
- W2048658568 countsByYear W20486585682015 @default.
- W2048658568 countsByYear W20486585682016 @default.
- W2048658568 countsByYear W20486585682017 @default.
- W2048658568 countsByYear W20486585682018 @default.
- W2048658568 countsByYear W20486585682019 @default.
- W2048658568 countsByYear W20486585682020 @default.
- W2048658568 countsByYear W20486585682021 @default.
- W2048658568 countsByYear W20486585682022 @default.
- W2048658568 countsByYear W20486585682023 @default.
- W2048658568 crossrefType "journal-article" @default.
- W2048658568 hasAuthorship W2048658568A5043292434 @default.
- W2048658568 hasAuthorship W2048658568A5051122758 @default.
- W2048658568 hasAuthorship W2048658568A5051167783 @default.
- W2048658568 hasAuthorship W2048658568A5058334280 @default.
- W2048658568 hasBestOaLocation W20486585682 @default.
- W2048658568 hasConcept C105795698 @default.
- W2048658568 hasConcept C111919701 @default.
- W2048658568 hasConcept C116834253 @default.
- W2048658568 hasConcept C119247159 @default.
- W2048658568 hasConcept C119599485 @default.
- W2048658568 hasConcept C119857082 @default.
- W2048658568 hasConcept C124101348 @default.
- W2048658568 hasConcept C127413603 @default.
- W2048658568 hasConcept C133731056 @default.
- W2048658568 hasConcept C139945424 @default.
- W2048658568 hasConcept C154945302 @default.
- W2048658568 hasConcept C179717631 @default.
- W2048658568 hasConcept C2780009758 @default.
- W2048658568 hasConcept C2780365114 @default.
- W2048658568 hasConcept C33923547 @default.
- W2048658568 hasConcept C38365724 @default.
- W2048658568 hasConcept C41008148 @default.
- W2048658568 hasConcept C50644808 @default.
- W2048658568 hasConcept C59822182 @default.
- W2048658568 hasConcept C60908668 @default.
- W2048658568 hasConcept C81299745 @default.
- W2048658568 hasConcept C86803240 @default.
- W2048658568 hasConceptScore W2048658568C105795698 @default.
- W2048658568 hasConceptScore W2048658568C111919701 @default.
- W2048658568 hasConceptScore W2048658568C116834253 @default.
- W2048658568 hasConceptScore W2048658568C119247159 @default.
- W2048658568 hasConceptScore W2048658568C119599485 @default.
- W2048658568 hasConceptScore W2048658568C119857082 @default.
- W2048658568 hasConceptScore W2048658568C124101348 @default.
- W2048658568 hasConceptScore W2048658568C127413603 @default.
- W2048658568 hasConceptScore W2048658568C133731056 @default.
- W2048658568 hasConceptScore W2048658568C139945424 @default.
- W2048658568 hasConceptScore W2048658568C154945302 @default.
- W2048658568 hasConceptScore W2048658568C179717631 @default.
- W2048658568 hasConceptScore W2048658568C2780009758 @default.
- W2048658568 hasConceptScore W2048658568C2780365114 @default.
- W2048658568 hasConceptScore W2048658568C33923547 @default.
- W2048658568 hasConceptScore W2048658568C38365724 @default.
- W2048658568 hasConceptScore W2048658568C41008148 @default.
- W2048658568 hasConceptScore W2048658568C50644808 @default.
- W2048658568 hasConceptScore W2048658568C59822182 @default.
- W2048658568 hasConceptScore W2048658568C60908668 @default.
- W2048658568 hasConceptScore W2048658568C81299745 @default.
- W2048658568 hasConceptScore W2048658568C86803240 @default.
- W2048658568 hasIssue "9" @default.
- W2048658568 hasLocation W20486585681 @default.
- W2048658568 hasLocation W20486585682 @default.
- W2048658568 hasOpenAccess W2048658568 @default.
- W2048658568 hasPrimaryLocation W20486585681 @default.
- W2048658568 hasRelatedWork W1987886632 @default.
- W2048658568 hasRelatedWork W2091943352 @default.
- W2048658568 hasRelatedWork W2543953258 @default.
- W2048658568 hasRelatedWork W2749461815 @default.
- W2048658568 hasRelatedWork W2890929759 @default.
- W2048658568 hasRelatedWork W2998088892 @default.
- W2048658568 hasRelatedWork W3012292080 @default.
- W2048658568 hasRelatedWork W4226023263 @default.
- W2048658568 hasRelatedWork W4231994957 @default.