Matches in SemOpenAlex for { <https://semopenalex.org/work/W2048716105> ?p ?o ?g. }
- W2048716105 endingPage "844" @default.
- W2048716105 startingPage "831" @default.
- W2048716105 abstract "We present a statistical model for allele-specific patterns of copy number polymorphisms (CNPs) in commercial single nucleotide polymorphism (SNP) array data. This model is based on the observation that fluorescent signal intensities tend to cluster into clouds of similar allele-specific copy number (ASCN) genotypes at each SNP locus. To capture the tendency of this clustering to be made vague by instrumental errors, our model allows for cluster memberships to overlap each other, according to a Bayesian Gaussian mixture model (GMM). This approach is flexible, allowing for both absolute scale differences and X/Y scale imbalances of fluorescent signal intensities. The resulting model is also robust toward unobserved ASCN genotypes, which can be problematic for ordinary GMMs. We illustrated the utility of the model by applying it to commercial SNP array intensity data obtained from the Illumina HumanHap 610K platform. We retrieved more than 4,000 allele-specific CNPs, though 99% of them showed rather simple allele-specific CNP patterns with only a single aneuploid haplotype among the normal haplotypes. The genotyping accuracy was assessed by two approaches, quantitative PCR and replicated subjects. The results of both of these approaches demonstrated mean genotyping error rates of 1%. We demonstrated a preliminary genome-wide association study of three hematological traits. The result exhibited that it could form the foundation for new, more effective statistical methods for the mapping of both disease genes and quantitative trait loci with genome-wide CNPs. The methods described in this work are implemented in a software package, PlatinumCNV, available on the Internet." @default.
- W2048716105 created "2016-06-24" @default.
- W2048716105 creator A5000894813 @default.
- W2048716105 creator A5020751833 @default.
- W2048716105 creator A5037133689 @default.
- W2048716105 creator A5049195381 @default.
- W2048716105 creator A5050676762 @default.
- W2048716105 creator A5072877214 @default.
- W2048716105 creator A5079171795 @default.
- W2048716105 creator A5081923476 @default.
- W2048716105 date "2011-11-28" @default.
- W2048716105 modified "2023-10-16" @default.
- W2048716105 title "PlatinumCNV: A Bayesian Gaussian mixture model for genotyping copy number polymorphisms using SNP array signal intensity data" @default.
- W2048716105 cites W1980991473 @default.
- W2048716105 cites W2003576629 @default.
- W2048716105 cites W2006085234 @default.
- W2048716105 cites W2008047653 @default.
- W2048716105 cites W2021708309 @default.
- W2048716105 cites W2021714239 @default.
- W2048716105 cites W2023369015 @default.
- W2048716105 cites W2042676907 @default.
- W2048716105 cites W2047361940 @default.
- W2048716105 cites W2054153086 @default.
- W2048716105 cites W2055043387 @default.
- W2048716105 cites W2066721762 @default.
- W2048716105 cites W2073062083 @default.
- W2048716105 cites W2084708009 @default.
- W2048716105 cites W2085755265 @default.
- W2048716105 cites W2116126626 @default.
- W2048716105 cites W2117446594 @default.
- W2048716105 cites W2118622562 @default.
- W2048716105 cites W2119279196 @default.
- W2048716105 cites W2120865735 @default.
- W2048716105 cites W2124873881 @default.
- W2048716105 cites W2128882148 @default.
- W2048716105 cites W2130542470 @default.
- W2048716105 cites W2136035537 @default.
- W2048716105 cites W2140968934 @default.
- W2048716105 cites W2142452151 @default.
- W2048716105 cites W2144172546 @default.
- W2048716105 cites W2145474008 @default.
- W2048716105 cites W2149681218 @default.
- W2048716105 cites W2155707112 @default.
- W2048716105 cites W2168730720 @default.
- W2048716105 doi "https://doi.org/10.1002/gepi.20633" @default.
- W2048716105 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22125222" @default.
- W2048716105 hasPublicationYear "2011" @default.
- W2048716105 type Work @default.
- W2048716105 sameAs 2048716105 @default.
- W2048716105 citedByCount "12" @default.
- W2048716105 countsByYear W20487161052012 @default.
- W2048716105 countsByYear W20487161052014 @default.
- W2048716105 countsByYear W20487161052015 @default.
- W2048716105 countsByYear W20487161052017 @default.
- W2048716105 countsByYear W20487161052018 @default.
- W2048716105 countsByYear W20487161052019 @default.
- W2048716105 countsByYear W20487161052020 @default.
- W2048716105 countsByYear W20487161052022 @default.
- W2048716105 crossrefType "journal-article" @default.
- W2048716105 hasAuthorship W2048716105A5000894813 @default.
- W2048716105 hasAuthorship W2048716105A5020751833 @default.
- W2048716105 hasAuthorship W2048716105A5037133689 @default.
- W2048716105 hasAuthorship W2048716105A5049195381 @default.
- W2048716105 hasAuthorship W2048716105A5050676762 @default.
- W2048716105 hasAuthorship W2048716105A5072877214 @default.
- W2048716105 hasAuthorship W2048716105A5079171795 @default.
- W2048716105 hasAuthorship W2048716105A5081923476 @default.
- W2048716105 hasConcept C104317684 @default.
- W2048716105 hasConcept C105795698 @default.
- W2048716105 hasConcept C106208931 @default.
- W2048716105 hasConcept C107673813 @default.
- W2048716105 hasConcept C135763542 @default.
- W2048716105 hasConcept C139275648 @default.
- W2048716105 hasConcept C153209595 @default.
- W2048716105 hasConcept C163691529 @default.
- W2048716105 hasConcept C180754005 @default.
- W2048716105 hasConcept C197754878 @default.
- W2048716105 hasConcept C31467283 @default.
- W2048716105 hasConcept C33923547 @default.
- W2048716105 hasConcept C37463918 @default.
- W2048716105 hasConcept C54355233 @default.
- W2048716105 hasConcept C70721500 @default.
- W2048716105 hasConcept C81941488 @default.
- W2048716105 hasConcept C84597430 @default.
- W2048716105 hasConcept C86803240 @default.
- W2048716105 hasConceptScore W2048716105C104317684 @default.
- W2048716105 hasConceptScore W2048716105C105795698 @default.
- W2048716105 hasConceptScore W2048716105C106208931 @default.
- W2048716105 hasConceptScore W2048716105C107673813 @default.
- W2048716105 hasConceptScore W2048716105C135763542 @default.
- W2048716105 hasConceptScore W2048716105C139275648 @default.
- W2048716105 hasConceptScore W2048716105C153209595 @default.
- W2048716105 hasConceptScore W2048716105C163691529 @default.
- W2048716105 hasConceptScore W2048716105C180754005 @default.
- W2048716105 hasConceptScore W2048716105C197754878 @default.
- W2048716105 hasConceptScore W2048716105C31467283 @default.
- W2048716105 hasConceptScore W2048716105C33923547 @default.
- W2048716105 hasConceptScore W2048716105C37463918 @default.