Matches in SemOpenAlex for { <https://semopenalex.org/work/W2048787196> ?p ?o ?g. }
- W2048787196 endingPage "362" @default.
- W2048787196 startingPage "317" @default.
- W2048787196 abstract "We investigate quantitative properties of the nonnegative solutions $${u(t,x)geq 0}$$ to the nonlinear fractional diffusion equation, $${partial_t u + mathcal{L} (u^m)=0}$$ , posed in a bounded domain, $${xinOmegasubset mathbb{R}^N}$$ , with m > 1 for t > 0. As $${mathcal{L}}$$ we use one of the most common definitions of the fractional Laplacian $${(-Delta)^s}$$ , 0 < s < 1, in a bounded domain with zero Dirichlet boundary conditions. We consider a general class of very weak solutions of the equation, and obtain a priori estimates in the form of smoothing effects, absolute upper bounds, lower bounds, and Harnack inequalities. We also investigate the boundary behaviour and we obtain sharp estimates from above and below. In addition, we obtain similar estimates for fractional semilinear elliptic equations. Either the standard Laplacian case s = 1 or the linear case m = 1 are recovered as limits. The method is quite general, suitable to be applied to a number of similar problems." @default.
- W2048787196 created "2016-06-24" @default.
- W2048787196 creator A5028901813 @default.
- W2048787196 creator A5057413750 @default.
- W2048787196 date "2015-03-25" @default.
- W2048787196 modified "2023-10-18" @default.
- W2048787196 title "A Priori Estimates for Fractional Nonlinear Degenerate Diffusion Equations on Bounded Domains" @default.
- W2048787196 cites W1506041086 @default.
- W2048787196 cites W1527296550 @default.
- W2048787196 cites W1889514422 @default.
- W2048787196 cites W1966085307 @default.
- W2048787196 cites W1974514674 @default.
- W2048787196 cites W2003734192 @default.
- W2048787196 cites W2007239591 @default.
- W2048787196 cites W2015983134 @default.
- W2048787196 cites W2024601750 @default.
- W2048787196 cites W2026667565 @default.
- W2048787196 cites W2027589340 @default.
- W2048787196 cites W2032747791 @default.
- W2048787196 cites W2034944652 @default.
- W2048787196 cites W2036995896 @default.
- W2048787196 cites W2041539023 @default.
- W2048787196 cites W2043328255 @default.
- W2048787196 cites W2048787196 @default.
- W2048787196 cites W2049166981 @default.
- W2048787196 cites W2056667991 @default.
- W2048787196 cites W2056975711 @default.
- W2048787196 cites W2061328864 @default.
- W2048787196 cites W2063595285 @default.
- W2048787196 cites W2081455845 @default.
- W2048787196 cites W2084801628 @default.
- W2048787196 cites W2086630837 @default.
- W2048787196 cites W2090275940 @default.
- W2048787196 cites W2091817304 @default.
- W2048787196 cites W2095198913 @default.
- W2048787196 cites W2111574818 @default.
- W2048787196 cites W2133789627 @default.
- W2048787196 cites W2158845426 @default.
- W2048787196 cites W2168343480 @default.
- W2048787196 cites W2592500121 @default.
- W2048787196 cites W3036627574 @default.
- W2048787196 cites W3103229763 @default.
- W2048787196 cites W4232499108 @default.
- W2048787196 cites W4233660666 @default.
- W2048787196 cites W4252590592 @default.
- W2048787196 cites W4302819252 @default.
- W2048787196 cites W653979993 @default.
- W2048787196 doi "https://doi.org/10.1007/s00205-015-0861-2" @default.
- W2048787196 hasPublicationYear "2015" @default.
- W2048787196 type Work @default.
- W2048787196 sameAs 2048787196 @default.
- W2048787196 citedByCount "68" @default.
- W2048787196 countsByYear W20487871962015 @default.
- W2048787196 countsByYear W20487871962016 @default.
- W2048787196 countsByYear W20487871962017 @default.
- W2048787196 countsByYear W20487871962018 @default.
- W2048787196 countsByYear W20487871962019 @default.
- W2048787196 countsByYear W20487871962020 @default.
- W2048787196 countsByYear W20487871962021 @default.
- W2048787196 countsByYear W20487871962022 @default.
- W2048787196 countsByYear W20487871962023 @default.
- W2048787196 crossrefType "journal-article" @default.
- W2048787196 hasAuthorship W2048787196A5028901813 @default.
- W2048787196 hasAuthorship W2048787196A5057413750 @default.
- W2048787196 hasBestOaLocation W20487871962 @default.
- W2048787196 hasConcept C110167270 @default.
- W2048787196 hasConcept C111472728 @default.
- W2048787196 hasConcept C121332964 @default.
- W2048787196 hasConcept C134306372 @default.
- W2048787196 hasConcept C138885662 @default.
- W2048787196 hasConcept C158622935 @default.
- W2048787196 hasConcept C182310444 @default.
- W2048787196 hasConcept C2775913539 @default.
- W2048787196 hasConcept C2775918384 @default.
- W2048787196 hasConcept C2779560616 @default.
- W2048787196 hasConcept C33923547 @default.
- W2048787196 hasConcept C34388435 @default.
- W2048787196 hasConcept C36503486 @default.
- W2048787196 hasConcept C62354387 @default.
- W2048787196 hasConcept C62520636 @default.
- W2048787196 hasConcept C72319582 @default.
- W2048787196 hasConcept C75553542 @default.
- W2048787196 hasConcept C8464174 @default.
- W2048787196 hasConceptScore W2048787196C110167270 @default.
- W2048787196 hasConceptScore W2048787196C111472728 @default.
- W2048787196 hasConceptScore W2048787196C121332964 @default.
- W2048787196 hasConceptScore W2048787196C134306372 @default.
- W2048787196 hasConceptScore W2048787196C138885662 @default.
- W2048787196 hasConceptScore W2048787196C158622935 @default.
- W2048787196 hasConceptScore W2048787196C182310444 @default.
- W2048787196 hasConceptScore W2048787196C2775913539 @default.
- W2048787196 hasConceptScore W2048787196C2775918384 @default.
- W2048787196 hasConceptScore W2048787196C2779560616 @default.
- W2048787196 hasConceptScore W2048787196C33923547 @default.
- W2048787196 hasConceptScore W2048787196C34388435 @default.
- W2048787196 hasConceptScore W2048787196C36503486 @default.
- W2048787196 hasConceptScore W2048787196C62354387 @default.
- W2048787196 hasConceptScore W2048787196C62520636 @default.