Matches in SemOpenAlex for { <https://semopenalex.org/work/W2048890887> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2048890887 endingPage "1955" @default.
- W2048890887 startingPage "1941" @default.
- W2048890887 abstract "We discuss the numerical computation of the cosine lemniscate function and its inverse, the lemniscate integral. These were previously studied by Bernoulli, Euler, Gauss, Abel, Jacobi and Ramanujan. We review general elliptic formulas for this special case and provide some novelties. We show that a Fourier series by Ramanujan converges twice as fast as the standard elliptic cosine Fourier series specialized to this case. The so-called imbricate series, however, converges geometrically fast over the entire complex plane. We derive two new expansions. The rational-plus-Fourier series converges much faster than Ramanujan’s: for real z: each term is asymptotically 12,400 times smaller than its immediate predecessor: coslem(z)=4B{q(1−q)cos(Bz)/[(1+q)2−4qcos2(Bz)]+∑n=1∞qn−1/2{1/(1+q2n−1)−1}cos((2n−1)Bz)} where q=exp(−π) is the elliptic nome, K≈1.85… is the complete elliptic integral of the first kind for a modulus m=1/2 and B=π/(K2). The rational imbricate series is uniformly valid over the complex plane, but converges twice as fast as the sech-imbricate series: coslem(z)=4Bq(1−q)∑j=−∞∞q(1−q)cos(Bz)/{(1+q)2−4qcos2(B[z−jPi])} where P=(4/2)K is the period in both the real and imaginary directions. We devise a new approximation for the lemniscate integral for real argument as the arccosine of a Chebyshev series and show that 17 terms yield about 15 digits of accuracy. For complex argument, we show that the lemniscate integral can be found to near machine precision (assumed as sixteen decimal digits) by computing the roots of a polynomial of degree thirteen. Alternatively, Newton’s iteration converges in three iterations with an initialization, accurate to four decimal places, that is the chosen root of a cubic equation." @default.
- W2048890887 created "2016-06-24" @default.
- W2048890887 creator A5074056648 @default.
- W2048890887 date "2011-02-01" @default.
- W2048890887 modified "2023-10-17" @default.
- W2048890887 title "New series for the cosine lemniscate function and the polynomialization of the lemniscate integral" @default.
- W2048890887 cites W1519130585 @default.
- W2048890887 cites W1975615251 @default.
- W2048890887 cites W1978650561 @default.
- W2048890887 cites W1980085415 @default.
- W2048890887 cites W1991650118 @default.
- W2048890887 cites W1994021194 @default.
- W2048890887 cites W2003704367 @default.
- W2048890887 cites W2006141568 @default.
- W2048890887 cites W2006391295 @default.
- W2048890887 cites W2010909361 @default.
- W2048890887 cites W2018969207 @default.
- W2048890887 cites W2023708317 @default.
- W2048890887 cites W2034284427 @default.
- W2048890887 cites W2042567159 @default.
- W2048890887 cites W2058006458 @default.
- W2048890887 cites W2059154724 @default.
- W2048890887 cites W2063740279 @default.
- W2048890887 cites W2067510467 @default.
- W2048890887 cites W2074602462 @default.
- W2048890887 cites W2081192208 @default.
- W2048890887 cites W2081202360 @default.
- W2048890887 cites W2085902949 @default.
- W2048890887 cites W2091039488 @default.
- W2048890887 cites W2121050416 @default.
- W2048890887 cites W2130694104 @default.
- W2048890887 cites W2148132617 @default.
- W2048890887 cites W2332441332 @default.
- W2048890887 cites W3102070974 @default.
- W2048890887 cites W66655902 @default.
- W2048890887 cites W940757057 @default.
- W2048890887 cites W2029851921 @default.
- W2048890887 doi "https://doi.org/10.1016/j.cam.2010.09.020" @default.
- W2048890887 hasPublicationYear "2011" @default.
- W2048890887 type Work @default.
- W2048890887 sameAs 2048890887 @default.
- W2048890887 citedByCount "5" @default.
- W2048890887 countsByYear W20488908872012 @default.
- W2048890887 countsByYear W20488908872016 @default.
- W2048890887 countsByYear W20488908872017 @default.
- W2048890887 countsByYear W20488908872019 @default.
- W2048890887 countsByYear W20488908872020 @default.
- W2048890887 crossrefType "journal-article" @default.
- W2048890887 hasAuthorship W2048890887A5074056648 @default.
- W2048890887 hasBestOaLocation W20488908871 @default.
- W2048890887 hasConcept C123958593 @default.
- W2048890887 hasConcept C131220774 @default.
- W2048890887 hasConcept C134306372 @default.
- W2048890887 hasConcept C143724316 @default.
- W2048890887 hasConcept C151730666 @default.
- W2048890887 hasConcept C179117685 @default.
- W2048890887 hasConcept C202444582 @default.
- W2048890887 hasConcept C207864730 @default.
- W2048890887 hasConcept C33923547 @default.
- W2048890887 hasConcept C52704855 @default.
- W2048890887 hasConcept C73749972 @default.
- W2048890887 hasConcept C86803240 @default.
- W2048890887 hasConceptScore W2048890887C123958593 @default.
- W2048890887 hasConceptScore W2048890887C131220774 @default.
- W2048890887 hasConceptScore W2048890887C134306372 @default.
- W2048890887 hasConceptScore W2048890887C143724316 @default.
- W2048890887 hasConceptScore W2048890887C151730666 @default.
- W2048890887 hasConceptScore W2048890887C179117685 @default.
- W2048890887 hasConceptScore W2048890887C202444582 @default.
- W2048890887 hasConceptScore W2048890887C207864730 @default.
- W2048890887 hasConceptScore W2048890887C33923547 @default.
- W2048890887 hasConceptScore W2048890887C52704855 @default.
- W2048890887 hasConceptScore W2048890887C73749972 @default.
- W2048890887 hasConceptScore W2048890887C86803240 @default.
- W2048890887 hasIssue "8" @default.
- W2048890887 hasLocation W20488908871 @default.
- W2048890887 hasOpenAccess W2048890887 @default.
- W2048890887 hasPrimaryLocation W20488908871 @default.
- W2048890887 hasRelatedWork W1994021194 @default.
- W2048890887 hasRelatedWork W2015621490 @default.
- W2048890887 hasRelatedWork W2048890887 @default.
- W2048890887 hasRelatedWork W2883985215 @default.
- W2048890887 hasRelatedWork W2885508954 @default.
- W2048890887 hasRelatedWork W3020986955 @default.
- W2048890887 hasRelatedWork W317612148 @default.
- W2048890887 hasRelatedWork W4315706739 @default.
- W2048890887 hasRelatedWork W4317672157 @default.
- W2048890887 hasRelatedWork W990954925 @default.
- W2048890887 hasVolume "235" @default.
- W2048890887 isParatext "false" @default.
- W2048890887 isRetracted "false" @default.
- W2048890887 magId "2048890887" @default.
- W2048890887 workType "article" @default.