Matches in SemOpenAlex for { <https://semopenalex.org/work/W2049090015> ?p ?o ?g. }
- W2049090015 endingPage "255" @default.
- W2049090015 startingPage "255" @default.
- W2049090015 abstract "Efficiency in the mutual fund (MF), is one of the issues that has attracted many investors in countries with advanced financial market for many years. Due to the need for frequent study of MF’s efficiency in short-term periods, investors need a method that not only has high accuracy, but also high speed. Data envelopment analysis (DEA) is proven to be one of the most widely used methods in the measurement of the efficiency and productivity of decision making units (DMUs). DEA for a large dataset with many inputs/outputs would require huge computer resources in terms of memory and CPU time. This paper uses neural network back-propagation DEA in measurement of mutual funds efficiency and shows the requirements, in the proposed method, for computer memory and CPU time are far less than that needed by conventional DEA methods and can therefore be a useful tool in measuring the efficiency of a large set of MFs." @default.
- W2049090015 created "2016-06-24" @default.
- W2049090015 creator A5021525840 @default.
- W2049090015 creator A5040540560 @default.
- W2049090015 creator A5041165531 @default.
- W2049090015 creator A5046888340 @default.
- W2049090015 date "2014-01-01" @default.
- W2049090015 modified "2023-09-26" @default.
- W2049090015 title "Neural network DEA for measuring the efficiency of mutual funds" @default.
- W2049090015 cites W1506731204 @default.
- W2049090015 cites W1507787960 @default.
- W2049090015 cites W1544190951 @default.
- W2049090015 cites W1554480316 @default.
- W2049090015 cites W156812831 @default.
- W2049090015 cites W1970989731 @default.
- W2049090015 cites W1977539771 @default.
- W2049090015 cites W1993750010 @default.
- W2049090015 cites W2000567178 @default.
- W2049090015 cites W2005303724 @default.
- W2049090015 cites W2007106598 @default.
- W2049090015 cites W20238753 @default.
- W2049090015 cites W2024821179 @default.
- W2049090015 cites W2026343940 @default.
- W2049090015 cites W2033904311 @default.
- W2049090015 cites W2037978132 @default.
- W2049090015 cites W2043018577 @default.
- W2049090015 cites W2049395631 @default.
- W2049090015 cites W2052556080 @default.
- W2049090015 cites W2054337887 @default.
- W2049090015 cites W2056685556 @default.
- W2049090015 cites W2061636868 @default.
- W2049090015 cites W2062404865 @default.
- W2049090015 cites W2076452041 @default.
- W2049090015 cites W2081465538 @default.
- W2049090015 cites W2086172736 @default.
- W2049090015 cites W2086311721 @default.
- W2049090015 cites W2092776852 @default.
- W2049090015 cites W2099924329 @default.
- W2049090015 cites W2100650499 @default.
- W2049090015 cites W2110250287 @default.
- W2049090015 cites W2147312592 @default.
- W2049090015 cites W2148654185 @default.
- W2049090015 cites W2156736254 @default.
- W2049090015 cites W2160449231 @default.
- W2049090015 cites W2160683585 @default.
- W2049090015 cites W2165928470 @default.
- W2049090015 cites W2167295008 @default.
- W2049090015 cites W2172074964 @default.
- W2049090015 cites W2605894322 @default.
- W2049090015 cites W3122826114 @default.
- W2049090015 cites W3124206851 @default.
- W2049090015 doi "https://doi.org/10.1504/ijads.2014.063229" @default.
- W2049090015 hasPublicationYear "2014" @default.
- W2049090015 type Work @default.
- W2049090015 sameAs 2049090015 @default.
- W2049090015 citedByCount "9" @default.
- W2049090015 countsByYear W20490900152016 @default.
- W2049090015 countsByYear W20490900152019 @default.
- W2049090015 countsByYear W20490900152020 @default.
- W2049090015 countsByYear W20490900152021 @default.
- W2049090015 countsByYear W20490900152022 @default.
- W2049090015 countsByYear W20490900152023 @default.
- W2049090015 crossrefType "journal-article" @default.
- W2049090015 hasAuthorship W2049090015A5021525840 @default.
- W2049090015 hasAuthorship W2049090015A5040540560 @default.
- W2049090015 hasAuthorship W2049090015A5041165531 @default.
- W2049090015 hasAuthorship W2049090015A5046888340 @default.
- W2049090015 hasConcept C10138342 @default.
- W2049090015 hasConcept C105795698 @default.
- W2049090015 hasConcept C126255220 @default.
- W2049090015 hasConcept C139719470 @default.
- W2049090015 hasConcept C144133560 @default.
- W2049090015 hasConcept C149782125 @default.
- W2049090015 hasConcept C154945302 @default.
- W2049090015 hasConcept C162324750 @default.
- W2049090015 hasConcept C17648541 @default.
- W2049090015 hasConcept C177264268 @default.
- W2049090015 hasConcept C185429906 @default.
- W2049090015 hasConcept C199360897 @default.
- W2049090015 hasConcept C204983608 @default.
- W2049090015 hasConcept C22088475 @default.
- W2049090015 hasConcept C33923547 @default.
- W2049090015 hasConcept C41008148 @default.
- W2049090015 hasConcept C42475967 @default.
- W2049090015 hasConcept C50644808 @default.
- W2049090015 hasConceptScore W2049090015C10138342 @default.
- W2049090015 hasConceptScore W2049090015C105795698 @default.
- W2049090015 hasConceptScore W2049090015C126255220 @default.
- W2049090015 hasConceptScore W2049090015C139719470 @default.
- W2049090015 hasConceptScore W2049090015C144133560 @default.
- W2049090015 hasConceptScore W2049090015C149782125 @default.
- W2049090015 hasConceptScore W2049090015C154945302 @default.
- W2049090015 hasConceptScore W2049090015C162324750 @default.
- W2049090015 hasConceptScore W2049090015C17648541 @default.
- W2049090015 hasConceptScore W2049090015C177264268 @default.
- W2049090015 hasConceptScore W2049090015C185429906 @default.
- W2049090015 hasConceptScore W2049090015C199360897 @default.
- W2049090015 hasConceptScore W2049090015C204983608 @default.