Matches in SemOpenAlex for { <https://semopenalex.org/work/W2049106247> ?p ?o ?g. }
- W2049106247 endingPage "716" @default.
- W2049106247 startingPage "705" @default.
- W2049106247 abstract "Flood extents caused by fluvial floods in urban and rural areas may be predicted by hydraulic models. Assimilation may be used to correct the model state and improve the estimates of the model parameters or external forcing. One common observation assimilated is the water level at various points along the modelled reach. Distributed water levels may be estimated indirectly along the flood extents in Synthetic Aperture Radar (SAR) images by intersecting the extents with the floodplain topography. It is necessary to select a subset of levels for assimilation because adjacent levels along the flood extent will be strongly correlated. A method for selecting such a subset automatically and in near real-time is described, which would allow the SAR water levels to be used in a forecasting model. The method first selects candidate waterline points in flooded rural areas having low slope. The waterline levels and positions are corrected for the effects of double reflections between the water surface and emergent vegetation at the flood edge. Waterline points are also selected in flooded urban areas away from radar shadow and layover caused by buildings, with levels similar to those in adjacent rural areas. The resulting points are thinned to reduce spatial autocorrelation using a top-down clustering approach. The method was developed using a TerraSAR-X image from a particular case study involving urban and rural flooding. The waterline points extracted proved to be spatially uncorrelated, with levels reasonably similar to those determined manually from aerial photographs, and in good agreement with those of nearby gauges." @default.
- W2049106247 created "2016-06-24" @default.
- W2049106247 creator A5008767485 @default.
- W2049106247 creator A5008976377 @default.
- W2049106247 creator A5025840984 @default.
- W2049106247 creator A5041770872 @default.
- W2049106247 creator A5086031620 @default.
- W2049106247 date "2012-09-01" @default.
- W2049106247 modified "2023-10-17" @default.
- W2049106247 title "Automatic near real-time selection of flood water levels from high resolution Synthetic Aperture Radar images for assimilation into hydraulic models: A case study" @default.
- W2049106247 cites W1550511765 @default.
- W2049106247 cites W1964461497 @default.
- W2049106247 cites W1968158967 @default.
- W2049106247 cites W1981546716 @default.
- W2049106247 cites W1983103603 @default.
- W2049106247 cites W1985417492 @default.
- W2049106247 cites W1996608357 @default.
- W2049106247 cites W2001796939 @default.
- W2049106247 cites W2002610571 @default.
- W2049106247 cites W2009551574 @default.
- W2049106247 cites W2013749338 @default.
- W2049106247 cites W2020580079 @default.
- W2049106247 cites W2023020665 @default.
- W2049106247 cites W2025785651 @default.
- W2049106247 cites W2026651618 @default.
- W2049106247 cites W2033602192 @default.
- W2049106247 cites W2037385122 @default.
- W2049106247 cites W2038850092 @default.
- W2049106247 cites W2039163601 @default.
- W2049106247 cites W2040225117 @default.
- W2049106247 cites W2052611179 @default.
- W2049106247 cites W2058245799 @default.
- W2049106247 cites W2079433425 @default.
- W2049106247 cites W2085438009 @default.
- W2049106247 cites W2091819605 @default.
- W2049106247 cites W2113255414 @default.
- W2049106247 cites W2124841986 @default.
- W2049106247 cites W2130863745 @default.
- W2049106247 cites W2133807139 @default.
- W2049106247 cites W2138002125 @default.
- W2049106247 cites W2166531069 @default.
- W2049106247 cites W2169311789 @default.
- W2049106247 doi "https://doi.org/10.1016/j.rse.2012.06.017" @default.
- W2049106247 hasPublicationYear "2012" @default.
- W2049106247 type Work @default.
- W2049106247 sameAs 2049106247 @default.
- W2049106247 citedByCount "89" @default.
- W2049106247 countsByYear W20491062472013 @default.
- W2049106247 countsByYear W20491062472014 @default.
- W2049106247 countsByYear W20491062472015 @default.
- W2049106247 countsByYear W20491062472016 @default.
- W2049106247 countsByYear W20491062472017 @default.
- W2049106247 countsByYear W20491062472018 @default.
- W2049106247 countsByYear W20491062472019 @default.
- W2049106247 countsByYear W20491062472020 @default.
- W2049106247 countsByYear W20491062472021 @default.
- W2049106247 countsByYear W20491062472022 @default.
- W2049106247 countsByYear W20491062472023 @default.
- W2049106247 crossrefType "journal-article" @default.
- W2049106247 hasAuthorship W2049106247A5008767485 @default.
- W2049106247 hasAuthorship W2049106247A5008976377 @default.
- W2049106247 hasAuthorship W2049106247A5025840984 @default.
- W2049106247 hasAuthorship W2049106247A5041770872 @default.
- W2049106247 hasAuthorship W2049106247A5086031620 @default.
- W2049106247 hasBestOaLocation W20491062472 @default.
- W2049106247 hasConcept C111368507 @default.
- W2049106247 hasConcept C120417685 @default.
- W2049106247 hasConcept C127313418 @default.
- W2049106247 hasConcept C155681218 @default.
- W2049106247 hasConcept C161064598 @default.
- W2049106247 hasConcept C166957645 @default.
- W2049106247 hasConcept C187320778 @default.
- W2049106247 hasConcept C205649164 @default.
- W2049106247 hasConcept C37423430 @default.
- W2049106247 hasConcept C39432304 @default.
- W2049106247 hasConcept C41008148 @default.
- W2049106247 hasConcept C554190296 @default.
- W2049106247 hasConcept C58640448 @default.
- W2049106247 hasConcept C62649853 @default.
- W2049106247 hasConcept C74256435 @default.
- W2049106247 hasConcept C76155785 @default.
- W2049106247 hasConcept C76886044 @default.
- W2049106247 hasConcept C87360688 @default.
- W2049106247 hasConceptScore W2049106247C111368507 @default.
- W2049106247 hasConceptScore W2049106247C120417685 @default.
- W2049106247 hasConceptScore W2049106247C127313418 @default.
- W2049106247 hasConceptScore W2049106247C155681218 @default.
- W2049106247 hasConceptScore W2049106247C161064598 @default.
- W2049106247 hasConceptScore W2049106247C166957645 @default.
- W2049106247 hasConceptScore W2049106247C187320778 @default.
- W2049106247 hasConceptScore W2049106247C205649164 @default.
- W2049106247 hasConceptScore W2049106247C37423430 @default.
- W2049106247 hasConceptScore W2049106247C39432304 @default.
- W2049106247 hasConceptScore W2049106247C41008148 @default.
- W2049106247 hasConceptScore W2049106247C554190296 @default.
- W2049106247 hasConceptScore W2049106247C58640448 @default.
- W2049106247 hasConceptScore W2049106247C62649853 @default.
- W2049106247 hasConceptScore W2049106247C74256435 @default.