Matches in SemOpenAlex for { <https://semopenalex.org/work/W2049202388> ?p ?o ?g. }
- W2049202388 endingPage "3772" @default.
- W2049202388 startingPage "3761" @default.
- W2049202388 abstract "The powerful combination of 113Cd NMR and 111mCd PAC (perturbed angular correlation) spectroscopies has been critical to determine the coordination geometry of CdII bound to thiolate-rich centers. We have obtained important linear correlations between 113Cd NMR and 111mCd PAC spectroscopic data and the acid/base properties of the metal binding site that illustrate the presence of a dynamic model for metal binding (see figure). These unique results can give new insight into CdII-substituted ZnII proteins. CdII has been used as a probe of zinc metalloenzymes and proteins because of the spectroscopic silence of ZnII. One of the most commonly used spectroscopic techniques is 113Cd NMR; however, in recent years 111mCd Perturbed Angular Correlation spectroscopy (111mCd PAC) has also been shown to provide useful structural, speciation and dynamics information on CdII complexes and biomolecules. In this article, we show how the joint use of 113Cd NMR and 111mCd PAC spectroscopies can provide detailed information about the CdII environment in thiolate-rich proteins. Specifically we show that the 113Cd NMR chemical shifts observed for CdII in the designed TRI series (TRI=Ac-G(LKALEEK)4G-NH2) of peptides vary depending on the proportion of trigonal planar CdS3 and pseudotetrahedral CdS3O species present in the equilibrium mixture. PAC spectra are able to quantify these mixtures. When one compares the chemical shift range for these peptides (from δ=570 to 700 ppm), it is observed that CdS3 species have δ 675–700 ppm, CdS3O complexes fall in the range δ 570–600 ppm and mixtures of these forms fall linearly between these extremes. If one then determines the pKa2 values for CdII complexation [pKa2 is for the reaction Cd[(peptide−H)2(peptide)]+→Cd(peptide)3− + 2H+] and compares these to the observed chemical shift for the Cd(peptide)3− complexes, one finds that there is also a direct linear correlation. Thus, by determining the chemical shift value of these species, one can directly assess the metal-binding affinity of the construct. This illustrates how proteins may be able to fine tune metal-binding affinity by destabilizing one metallospecies with respect to another. More important, these studies demonstrate that one may have a broad 113Cd NMR chemical shift range for a chemical species (e.g., CdS3O) which is not necessarily a reflection of the structural diversity within such a four-coordinate species, but rather a consequence of a fast exchange equilibrium between two related species (e.g., CdS3O and CdS3). This could lead to reinterpretation of the assignments of cadmium–protein complexes and may impact the application of CdII as a probe of ZnII sites in biology." @default.
- W2049202388 created "2016-06-24" @default.
- W2049202388 creator A5030625779 @default.
- W2049202388 creator A5033340669 @default.
- W2049202388 creator A5044615615 @default.
- W2049202388 creator A5050922058 @default.
- W2049202388 creator A5084987684 @default.
- W2049202388 date "2009-02-19" @default.
- W2049202388 modified "2023-10-02" @default.
- W2049202388 title "The Correlation of<sup>113</sup>Cd NMR and<sup>111m</sup>Cd PAC Spectroscopies Provides a Powerful Approach for the Characterization of the Structure of Cd<sup>II</sup>-Substituted Zn<sup>II</sup>Proteins" @default.
- W2049202388 cites W1965614166 @default.
- W2049202388 cites W1969531857 @default.
- W2049202388 cites W1978044086 @default.
- W2049202388 cites W1978298108 @default.
- W2049202388 cites W1979066984 @default.
- W2049202388 cites W1981901173 @default.
- W2049202388 cites W1982094787 @default.
- W2049202388 cites W1986894327 @default.
- W2049202388 cites W1988333700 @default.
- W2049202388 cites W1991259123 @default.
- W2049202388 cites W1991748250 @default.
- W2049202388 cites W1991883335 @default.
- W2049202388 cites W1992661805 @default.
- W2049202388 cites W1992930579 @default.
- W2049202388 cites W1997251397 @default.
- W2049202388 cites W1997663251 @default.
- W2049202388 cites W2000000081 @default.
- W2049202388 cites W2005228819 @default.
- W2049202388 cites W2006370393 @default.
- W2049202388 cites W2009955781 @default.
- W2049202388 cites W2011253479 @default.
- W2049202388 cites W2020336506 @default.
- W2049202388 cites W2020555083 @default.
- W2049202388 cites W2021116136 @default.
- W2049202388 cites W2038793138 @default.
- W2049202388 cites W2041114202 @default.
- W2049202388 cites W2046165000 @default.
- W2049202388 cites W2048482864 @default.
- W2049202388 cites W2048688795 @default.
- W2049202388 cites W2056246590 @default.
- W2049202388 cites W2064482416 @default.
- W2049202388 cites W2065926195 @default.
- W2049202388 cites W2075688918 @default.
- W2049202388 cites W2077535745 @default.
- W2049202388 cites W2078482542 @default.
- W2049202388 cites W2084376937 @default.
- W2049202388 cites W2086036002 @default.
- W2049202388 cites W2086535302 @default.
- W2049202388 cites W2088497972 @default.
- W2049202388 cites W2089153727 @default.
- W2049202388 cites W2089249230 @default.
- W2049202388 cites W2091710882 @default.
- W2049202388 cites W2091937293 @default.
- W2049202388 cites W2092343632 @default.
- W2049202388 cites W2093420421 @default.
- W2049202388 cites W2095098462 @default.
- W2049202388 cites W2095913462 @default.
- W2049202388 cites W2115297948 @default.
- W2049202388 cites W2120048621 @default.
- W2049202388 cites W2123067666 @default.
- W2049202388 cites W2123666312 @default.
- W2049202388 cites W2130842736 @default.
- W2049202388 cites W2133294243 @default.
- W2049202388 cites W2136028668 @default.
- W2049202388 cites W2143964017 @default.
- W2049202388 cites W2145144268 @default.
- W2049202388 cites W2148386309 @default.
- W2049202388 cites W2149391857 @default.
- W2049202388 cites W2155806500 @default.
- W2049202388 cites W2157861621 @default.
- W2049202388 cites W2951064464 @default.
- W2049202388 cites W4206528397 @default.
- W2049202388 cites W4213096196 @default.
- W2049202388 cites W4237589286 @default.
- W2049202388 cites W4254531941 @default.
- W2049202388 cites W984867828 @default.
- W2049202388 doi "https://doi.org/10.1002/chem.200802105" @default.
- W2049202388 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3598615" @default.
- W2049202388 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/19229934" @default.
- W2049202388 hasPublicationYear "2009" @default.
- W2049202388 type Work @default.
- W2049202388 sameAs 2049202388 @default.
- W2049202388 citedByCount "38" @default.
- W2049202388 countsByYear W20492023882012 @default.
- W2049202388 countsByYear W20492023882013 @default.
- W2049202388 countsByYear W20492023882014 @default.
- W2049202388 countsByYear W20492023882015 @default.
- W2049202388 countsByYear W20492023882016 @default.
- W2049202388 countsByYear W20492023882017 @default.
- W2049202388 countsByYear W20492023882018 @default.
- W2049202388 countsByYear W20492023882019 @default.
- W2049202388 countsByYear W20492023882022 @default.
- W2049202388 crossrefType "journal-article" @default.
- W2049202388 hasAuthorship W2049202388A5030625779 @default.
- W2049202388 hasAuthorship W2049202388A5033340669 @default.
- W2049202388 hasAuthorship W2049202388A5044615615 @default.
- W2049202388 hasAuthorship W2049202388A5050922058 @default.
- W2049202388 hasAuthorship W2049202388A5084987684 @default.