Matches in SemOpenAlex for { <https://semopenalex.org/work/W2049203607> ?p ?o ?g. }
- W2049203607 endingPage "2095" @default.
- W2049203607 startingPage "2085" @default.
- W2049203607 abstract "Restricted accessMoreSectionsView PDF ToolsAdd to favoritesDownload CitationsTrack Citations ShareShare onFacebookTwitterLinked InRedditEmail Cite this article Frazer Christophe, Ferguson Neil M., Wolf Frank de and Anderson Roy M. 2001The role of antigenic stimulation and cytotoxic T cell activity in regulating the long–term immunopathogenesis of HIV: mechanisms and clinical implicationsProc. R. Soc. Lond. B.2682085–2095http://doi.org/10.1098/rspb.2001.1777SectionSupplemental MaterialRestricted accessThe role of antigenic stimulation and cytotoxic T cell activity in regulating the long–term immunopathogenesis of HIV: mechanisms and clinical implications Christophe Frazer Christophe Frazer Department of Infectious Disease Epidemiology, Imperial College of Science, Technology and Medicine, St Mary's Campus, Norfolk Place, Paddington, London W2 1PG, UK [email protected] Google Scholar Find this author on PubMed Search for more papers by this author , Neil M. Ferguson Neil M. Ferguson Department of Infectious Disease Epidemiology, Imperial College of Science, Technology and Medicine, St Mary's Campus, Norfolk Place, Paddington, London W2 1PG, UK Google Scholar Find this author on PubMed Search for more papers by this author , Frank de Wolf Frank de Wolf Department of Virology, Academic Medical Centre, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands Google Scholar Find this author on PubMed Search for more papers by this author and Roy M. Anderson Roy M. Anderson Department of Infectious Disease Epidemiology, Imperial College of Science, Technology and Medicine, St Mary's Campus, Norfolk Place, Paddington, London W2 1PG, UK Google Scholar Find this author on PubMed Search for more papers by this author Christophe Frazer Christophe Frazer Department of Infectious Disease Epidemiology, Imperial College of Science, Technology and Medicine, St Mary's Campus, Norfolk Place, Paddington, London W2 1PG, UK [email protected] Google Scholar Find this author on PubMed Search for more papers by this author , Neil M. Ferguson Neil M. Ferguson Department of Infectious Disease Epidemiology, Imperial College of Science, Technology and Medicine, St Mary's Campus, Norfolk Place, Paddington, London W2 1PG, UK Google Scholar Find this author on PubMed Search for more papers by this author , Frank de Wolf Frank de Wolf Department of Virology, Academic Medical Centre, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands Google Scholar Find this author on PubMed Search for more papers by this author and Roy M. Anderson Roy M. Anderson Department of Infectious Disease Epidemiology, Imperial College of Science, Technology and Medicine, St Mary's Campus, Norfolk Place, Paddington, London W2 1PG, UK Google Scholar Find this author on PubMed Search for more papers by this author Published:22 October 2001https://doi.org/10.1098/rspb.2001.1777AbstractThis paper develops a predictive mathematical model of cell infection, host immune response and viral replication that reproduces observed long–term trends in human immunodeficiency virus (HIV) pathogenesis. Cell activation induced by repeated exposure to many different antigens is proposed as the principal mechanism of providing target cells for HIV infection and, hence, of CD4+ T cell depletion, with regulation of the overall T cell pool size causing concomitant CD8 pool increases. The model correctly predicts the cross–patient variability in disease progression, the rate of which is found to depend on the efficacy of anti–HIV cytotoxic T lymphocyte responses, overall viral pathogenicity and random effects. The model also predicts a variety of responses to anti–viral therapy, including episodic residual viral replication and discordant responses and we find that such effects can be suppressed by increasing the potency of treatment. Previous ArticleNext Article VIEW FULL TEXT DOWNLOAD PDF FiguresRelatedReferencesDetailsCited by Li D, Chai B, Fu Y and Wang Q (2020) Cytomegalovirus dynamics model with random behavior, AIMS Mathematics, 10.3934/math.2020410, 5:6, (6373-6394), . Conway J and Ribeiro R (2018) Modeling the immune response to HIV infection, Current Opinion in Systems Biology, 10.1016/j.coisb.2018.10.006, 12, (61-69), Online publication date: 1-Dec-2018. Zhang W, Wahl L and Yu P (2016) Backward bifurcations, turning points and rich dynamics in simple disease models, Journal of Mathematical Biology, 10.1007/s00285-016-0976-6, 73:4, (947-976), Online publication date: 1-Oct-2016. Wikramaratna P, Lourenço J, Klenerman P, Pybus O and Gupta S (2015) Effects of neutralizing antibodies on escape from CD8+ T-cell responses in HIV-1 infection, Philosophical Transactions of the Royal Society B: Biological Sciences, 370:1675, Online publication date: 19-Aug-2015. Sánchez-Taltavull D and Alarcón T (2015) Stochastic modelling of viral blips in HIV-1-infected patients: Effects of inhomogeneous density fluctuations, Journal of Theoretical Biology, 10.1016/j.jtbi.2015.02.001, 371, (79-89), Online publication date: 1-Apr-2015. Zhang W, Wahl L and Yu P (2014) Viral Blips May Not Need a Trigger: How Transient Viremia Can Arise in Deterministic In-Host Models, SIAM Review, 10.1137/130937421, 56:1, (127-155), Online publication date: 1-Jan-2014. Wang S and Rong L (2014) Stochastic population switch may explain the latent reservoir stability and intermittent viral blips in HIV patients on suppressive therapy, Journal of Theoretical Biology, 10.1016/j.jtbi.2014.06.042, 360, (137-148), Online publication date: 1-Nov-2014. Perelson A and Ribeiro R (2013) Modeling the within-host dynamics of HIV infection, BMC Biology, 10.1186/1741-7007-11-96, 11:1, Online publication date: 1-Dec-2013. Zhang W, Wahl L and Yu P (2013) Conditions for Transient Viremia in Deterministic in-Host Models: Viral Blips Need No Exogenous Trigger, SIAM Journal on Applied Mathematics, 10.1137/120884535, 73:2, (853-881), Online publication date: 1-Jan-2013. Bocharov G, Chereshnev V, Gainova I, Bazhan S, Bachmetyev B, Argilaguet J, Martinez J and Meyerhans A (2012) Human Immunodeficiency Virus Infection : from Biological Observations to Mechanistic Mathematical Modelling, Mathematical Modelling of Natural Phenomena, 10.1051/mmnp/20127507, 7:5, (78-104), . Fung I, Gambhir M, van Sighem A, de Wolf F and Garnett G (2010) Superinfection with a heterologous HIV strain per se does not lead to faster progression, Mathematical Biosciences, 10.1016/j.mbs.2009.11.007, 224:1, (1-9), Online publication date: 1-Mar-2010. Rong L and Perelson A (2009) Asymmetric division of activated latently infected cells may explain the decay kinetics of the HIV-1 latent reservoir and intermittent viral blips, Mathematical Biosciences, 10.1016/j.mbs.2008.10.006, 217:1, (77-87), Online publication date: 1-Jan-2009. Rong L and Perelson A (2009) Modeling HIV persistence, the latent reservoir, and viral blips, Journal of Theoretical Biology, 10.1016/j.jtbi.2009.06.011, 260:2, (308-331), Online publication date: 1-Sep-2009. van Sighem A, Zhang S, Reiss P, Gras L, van der Ende M, Kroon F, Prins J and de Wolf F (2008) Immunologic, Virologic, and Clinical Consequences of Episodes of Transient Viremia During Suppressive Combination Antiretroviral Therapy, JAIDS Journal of Acquired Immune Deficiency Syndromes, 10.1097/QAI.0b013e31816a1d4f, 48:1, (104-108), Online publication date: 1-May-2008. Müller V and Bonhoeffer S (2008) Intra-host Dynamics and Evolution of HIV Infection Origin and Evolution of Viruses, 10.1016/B978-0-12-374153-0.00014-X, (279-301), . Jones L and Perelson A (2007) Transient Viremia, Plasma Viral Load, and Reservoir Replenishment in HIV-Infected Patients on Antiretroviral Therapy, JAIDS Journal of Acquired Immune Deficiency Syndromes, 10.1097/QAI.0b013e3180654836, 45:5, (483-493), Online publication date: 15-Aug-2007. Fraser C, Hollingsworth T, Chapman R, de Wolf F and Hanage W (2007) Variation in HIV-1 set-point viral load: Epidemiological analysis and an evolutionary hypothesis, Proceedings of the National Academy of Sciences, 10.1073/pnas.0708559104, 104:44, (17441-17446), Online publication date: 30-Oct-2007. Korthals Altes H, de Boer R and Boerlijst M (2006) Role of avidity and breadth of the CD4 T cell response in progression to AIDS, Proceedings of the Royal Society B: Biological Sciences, 273:1594, (1697-1704), Online publication date: 7-Jul-2006. Stilianakis N and Schenzle D (2006) On the intra-host dynamics of HIV-1 infections, Mathematical Biosciences, 10.1016/j.mbs.2005.09.003, 199:1, (1-25), Online publication date: 1-Jan-2006. Griffin J, Fraser C, Gras L, de Wolf F and Ghani A (2006) The Effect on Treatment Comparisons of Different Measurement Frequencies in Human Immunodeficiency Virus Observational Databases, American Journal of Epidemiology, 10.1093/aje/kwj083, 163:7, (676-683), Online publication date: 1-Apr-2006. Anderson R and Hanson M (2005) Potential Public Health Impact of Imperfect HIV Type 1 Vaccines, The Journal of Infectious Diseases, 10.1086/425267, 191:s1, (S85-S96), Online publication date: 1-Feb-2005. Merrill S (2005) The stochastic dance of early HIV infection, Journal of Computational and Applied Mathematics, 10.1016/j.cam.2003.09.057, 184:1, (242-257), Online publication date: 1-Dec-2005. FRASER C, FERGUSON N, DE WOLF F, GHANI A, GARNETT G and ANDERSON R (2002) Antigen-driven T-cell Turnover, Journal of Theoretical Biology, 10.1006/jtbi.2002.3085, 219:2, (177-192), Online publication date: 1-Nov-2002. Fraser C, Ferguson N and Anderson R (2001) Quantification of intrinsic residual viral replication in treated HIV-infected patients, Proceedings of the National Academy of Sciences, 10.1073/pnas.261283598, 98:26, (15167-15172), Online publication date: 18-Dec-2001. Lythgoe K, Blanquart F, Pellis L, Fraser C and Dobson A (2016) Large Variations in HIV-1 Viral Load Explained by Shifting-Mosaic Metapopulation Dynamics, PLOS Biology, 10.1371/journal.pbio.1002567, 14:10, (e1002567) Smit C, Hallett T, Lange J, Garnett G, de Wolf F and Maartens G (2008) Late Entry to HIV Care Limits the Impact of Anti-Retroviral Therapy in the Netherlands, PLoS ONE, 10.1371/journal.pone.0001949, 3:4, (e1949) Sanjuán R, Nebot M, Peris J, Alcamí J and Fraser C (2013) Immune Activation Promotes Evolutionary Conservation of T-Cell Epitopes in HIV-1, PLoS Biology, 10.1371/journal.pbio.1001523, 11:4, (e1001523) Conway J, Coombs D and Fraser C (2011) A Stochastic Model of Latently Infected Cell Reactivation and Viral Blip Generation in Treated HIV Patients, PLoS Computational Biology, 10.1371/journal.pcbi.1002033, 7:4, (e1002033) Alizon S and Magnus C (2012) Modelling the Course of an HIV Infection: Insights from Ecology and Evolution, Viruses, 10.3390/v4101984, 4:10, (1984-2013) Shirreff G, Pellis L, Laeyendecker O, Fraser C and Müller V (2011) Transmission Selects for HIV-1 Strains of Intermediate Virulence: A Modelling Approach, PLoS Computational Biology, 10.1371/journal.pcbi.1002185, 7:10, (e1002185) Rong L, Perelson A and Antia R (2009) Modeling Latently Infected Cell Activation: Viral and Latent Reservoir Persistence, and Viral Blips in HIV-infected Patients on Potent Therapy, PLoS Computational Biology, 10.1371/journal.pcbi.1000533, 5:10, (e1000533) This Issue22 October 2001Volume 268Issue 1481 Article InformationDOI:https://doi.org/10.1098/rspb.2001.1777PubMed:11600072Published by:Royal SocietyPrint ISSN:0962-8452Online ISSN:1471-2954History: Published online22/10/2001Published in print22/10/2001 License: Citations and impact KeywordsHiv pathogenesismathematical modelanti–viraltreatment Large datasets are available through Proceedings B's partnership with Dryad" @default.
- W2049203607 created "2016-06-24" @default.
- W2049203607 creator A5008407354 @default.
- W2049203607 creator A5027792801 @default.
- W2049203607 creator A5049396774 @default.
- W2049203607 creator A5062368847 @default.
- W2049203607 date "2001-10-22" @default.
- W2049203607 modified "2023-09-25" @default.
- W2049203607 title "The role of antigenic stimulation and cytotoxic T cell activity in regulating the long–term immunopathogenesis of HIV: mechanisms and clinical implications" @default.
- W2049203607 cites W1509269909 @default.
- W2049203607 cites W1574561647 @default.
- W2049203607 cites W1580217007 @default.
- W2049203607 cites W16961449 @default.
- W2049203607 cites W1815763197 @default.
- W2049203607 cites W1907974286 @default.
- W2049203607 cites W1973398091 @default.
- W2049203607 cites W1974807329 @default.
- W2049203607 cites W1980169905 @default.
- W2049203607 cites W1980246983 @default.
- W2049203607 cites W1993190635 @default.
- W2049203607 cites W1995237219 @default.
- W2049203607 cites W1996168633 @default.
- W2049203607 cites W1998784178 @default.
- W2049203607 cites W2001204613 @default.
- W2049203607 cites W2004246558 @default.
- W2049203607 cites W2010019194 @default.
- W2049203607 cites W2011442445 @default.
- W2049203607 cites W2011630381 @default.
- W2049203607 cites W2012139740 @default.
- W2049203607 cites W2013602955 @default.
- W2049203607 cites W2014984955 @default.
- W2049203607 cites W2019508559 @default.
- W2049203607 cites W2022098233 @default.
- W2049203607 cites W2030844138 @default.
- W2049203607 cites W2044403736 @default.
- W2049203607 cites W2045446531 @default.
- W2049203607 cites W2047041591 @default.
- W2049203607 cites W2048499136 @default.
- W2049203607 cites W2051293603 @default.
- W2049203607 cites W2058220670 @default.
- W2049203607 cites W2061657962 @default.
- W2049203607 cites W2067230527 @default.
- W2049203607 cites W2070607367 @default.
- W2049203607 cites W2071148173 @default.
- W2049203607 cites W2073287424 @default.
- W2049203607 cites W2078569743 @default.
- W2049203607 cites W2078806703 @default.
- W2049203607 cites W2093259226 @default.
- W2049203607 cites W2093458589 @default.
- W2049203607 cites W2096008770 @default.
- W2049203607 cites W2099509337 @default.
- W2049203607 cites W2106514943 @default.
- W2049203607 cites W2108381430 @default.
- W2049203607 cites W2108730570 @default.
- W2049203607 cites W2113170411 @default.
- W2049203607 cites W2115603688 @default.
- W2049203607 cites W2118273742 @default.
- W2049203607 cites W2120315269 @default.
- W2049203607 cites W2121196034 @default.
- W2049203607 cites W2124364050 @default.
- W2049203607 cites W2127031590 @default.
- W2049203607 cites W2129114331 @default.
- W2049203607 cites W2135816279 @default.
- W2049203607 cites W2136032883 @default.
- W2049203607 cites W2136526938 @default.
- W2049203607 cites W2138901765 @default.
- W2049203607 cites W2139551787 @default.
- W2049203607 cites W2144914258 @default.
- W2049203607 cites W2146797068 @default.
- W2049203607 cites W2151303894 @default.
- W2049203607 cites W2155025120 @default.
- W2049203607 cites W2155449170 @default.
- W2049203607 cites W2156110652 @default.
- W2049203607 cites W2162543584 @default.
- W2049203607 cites W2162703129 @default.
- W2049203607 cites W2163345314 @default.
- W2049203607 cites W2163349584 @default.
- W2049203607 cites W2168776079 @default.
- W2049203607 cites W2169404894 @default.
- W2049203607 cites W2171282348 @default.
- W2049203607 cites W2318289184 @default.
- W2049203607 cites W2320170627 @default.
- W2049203607 cites W2334332481 @default.
- W2049203607 cites W4211183651 @default.
- W2049203607 cites W4243838042 @default.
- W2049203607 cites W49920453 @default.
- W2049203607 cites W93538641 @default.
- W2049203607 doi "https://doi.org/10.1098/rspb.2001.1777" @default.
- W2049203607 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/1088852" @default.
- W2049203607 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/11600072" @default.
- W2049203607 hasPublicationYear "2001" @default.
- W2049203607 type Work @default.
- W2049203607 sameAs 2049203607 @default.
- W2049203607 citedByCount "41" @default.
- W2049203607 countsByYear W20492036072012 @default.
- W2049203607 countsByYear W20492036072013 @default.
- W2049203607 countsByYear W20492036072014 @default.
- W2049203607 countsByYear W20492036072015 @default.