Matches in SemOpenAlex for { <https://semopenalex.org/work/W2049206538> ?p ?o ?g. }
- W2049206538 endingPage "36248" @default.
- W2049206538 startingPage "36229" @default.
- W2049206538 abstract "RNA viruses encoding high- or low-fidelity RNA-dependent RNA polymerases (RdRp) are attenuated. The ability to predict residues of the RdRp required for faithful incorporation of nucleotides represents an essential step in any pipeline intended to exploit perturbed fidelity as the basis for rational design of vaccine candidates. We used x-ray crystallography, molecular dynamics simulations, NMR spectroscopy, and pre-steady-state kinetics to compare a mutator (H273R) RdRp from poliovirus to the wild-type (WT) enzyme. We show that the nucleotide-binding site toggles between the nucleotide binding-occluded and nucleotide binding-competent states. The conformational dynamics between these states were enhanced by binding to primed template RNA. For the WT, the occluded conformation was favored; for H273R, the competent conformation was favored. The resonance for Met-187 in our NMR spectra reported on the ability of the enzyme to check the correctness of the bound nucleotide. Kinetic experiments were consistent with the conformational dynamics contributing to the established pre-incorporation conformational change and fidelity checkpoint. For H273R, residues comprising the active site spent more time in the catalytically competent conformation and were more positively correlated than the WT. We propose that by linking the equilibrium between the binding-occluded and binding-competent conformations of the nucleotide-binding pocket and other active-site dynamics to the correctness of the bound nucleotide, faithful nucleotide incorporation is achieved. These studies underscore the need to apply multiple biophysical and biochemical approaches to the elucidation of the physical basis for polymerase fidelity.The physical basis for polymerase fidelity remains unclear.ResultsMolecular dynamics simulations, NMR, and pre-steady-state kinetics of a mutator polymerase reveal conformational states of the active site that serve as fidelity checkpoints.ConclusionProtein dynamics, largely concealed by x-ray crystallography, govern incorporation fidelity.SignificanceStrategies have been inspired for engineering (anti)mutator polymerases and attenuated viruses. RNA viruses encoding high- or low-fidelity RNA-dependent RNA polymerases (RdRp) are attenuated. The ability to predict residues of the RdRp required for faithful incorporation of nucleotides represents an essential step in any pipeline intended to exploit perturbed fidelity as the basis for rational design of vaccine candidates. We used x-ray crystallography, molecular dynamics simulations, NMR spectroscopy, and pre-steady-state kinetics to compare a mutator (H273R) RdRp from poliovirus to the wild-type (WT) enzyme. We show that the nucleotide-binding site toggles between the nucleotide binding-occluded and nucleotide binding-competent states. The conformational dynamics between these states were enhanced by binding to primed template RNA. For the WT, the occluded conformation was favored; for H273R, the competent conformation was favored. The resonance for Met-187 in our NMR spectra reported on the ability of the enzyme to check the correctness of the bound nucleotide. Kinetic experiments were consistent with the conformational dynamics contributing to the established pre-incorporation conformational change and fidelity checkpoint. For H273R, residues comprising the active site spent more time in the catalytically competent conformation and were more positively correlated than the WT. We propose that by linking the equilibrium between the binding-occluded and binding-competent conformations of the nucleotide-binding pocket and other active-site dynamics to the correctness of the bound nucleotide, faithful nucleotide incorporation is achieved. These studies underscore the need to apply multiple biophysical and biochemical approaches to the elucidation of the physical basis for polymerase fidelity.The physical basis for polymerase fidelity remains unclear. Molecular dynamics simulations, NMR, and pre-steady-state kinetics of a mutator polymerase reveal conformational states of the active site that serve as fidelity checkpoints. Protein dynamics, largely concealed by x-ray crystallography, govern incorporation fidelity." @default.
- W2049206538 created "2016-06-24" @default.
- W2049206538 creator A5000703549 @default.
- W2049206538 creator A5017875151 @default.
- W2049206538 creator A5021526153 @default.
- W2049206538 creator A5027669611 @default.
- W2049206538 creator A5037188019 @default.
- W2049206538 creator A5039079381 @default.
- W2049206538 creator A5049750295 @default.
- W2049206538 creator A5050848489 @default.
- W2049206538 creator A5059420993 @default.
- W2049206538 creator A5060667104 @default.
- W2049206538 creator A5063867548 @default.
- W2049206538 creator A5070947820 @default.
- W2049206538 creator A5071486914 @default.
- W2049206538 creator A5073115671 @default.
- W2049206538 date "2014-12-01" @default.
- W2049206538 modified "2023-09-28" @default.
- W2049206538 title "Structural Dynamics as a Contributor to Error-prone Replication by an RNA-dependent RNA Polymerase" @default.
- W2049206538 cites W1515293536 @default.
- W2049206538 cites W1539796472 @default.
- W2049206538 cites W1967154222 @default.
- W2049206538 cites W1975106131 @default.
- W2049206538 cites W1976499671 @default.
- W2049206538 cites W1978696864 @default.
- W2049206538 cites W1984259198 @default.
- W2049206538 cites W1987253731 @default.
- W2049206538 cites W1988411933 @default.
- W2049206538 cites W1990662996 @default.
- W2049206538 cites W1994278598 @default.
- W2049206538 cites W1994286350 @default.
- W2049206538 cites W1999605813 @default.
- W2049206538 cites W1999771444 @default.
- W2049206538 cites W1999832946 @default.
- W2049206538 cites W2000031071 @default.
- W2049206538 cites W2001773296 @default.
- W2049206538 cites W2003412353 @default.
- W2049206538 cites W2003574450 @default.
- W2049206538 cites W2004500886 @default.
- W2049206538 cites W2012457782 @default.
- W2049206538 cites W2015894034 @default.
- W2049206538 cites W2018212701 @default.
- W2049206538 cites W2023292326 @default.
- W2049206538 cites W2028968631 @default.
- W2049206538 cites W2031536871 @default.
- W2049206538 cites W2033345469 @default.
- W2049206538 cites W2034699053 @default.
- W2049206538 cites W2035266068 @default.
- W2049206538 cites W2035687084 @default.
- W2049206538 cites W2035952542 @default.
- W2049206538 cites W2038840577 @default.
- W2049206538 cites W2039551089 @default.
- W2049206538 cites W2042712534 @default.
- W2049206538 cites W2053792903 @default.
- W2049206538 cites W2056744206 @default.
- W2049206538 cites W2063006927 @default.
- W2049206538 cites W2067174909 @default.
- W2049206538 cites W2076304130 @default.
- W2049206538 cites W2078491583 @default.
- W2049206538 cites W2079280284 @default.
- W2049206538 cites W2093356049 @default.
- W2049206538 cites W2106140689 @default.
- W2049206538 cites W2109851929 @default.
- W2049206538 cites W2118233996 @default.
- W2049206538 cites W2124026197 @default.
- W2049206538 cites W2124632687 @default.
- W2049206538 cites W2125923988 @default.
- W2049206538 cites W2126589642 @default.
- W2049206538 cites W2127362915 @default.
- W2049206538 cites W2131085566 @default.
- W2049206538 cites W2132589721 @default.
- W2049206538 cites W2132629607 @default.
- W2049206538 cites W2136729627 @default.
- W2049206538 cites W2144081223 @default.
- W2049206538 cites W2144288821 @default.
- W2049206538 cites W2159211495 @default.
- W2049206538 cites W2160451368 @default.
- W2049206538 cites W2163915395 @default.
- W2049206538 cites W2164061438 @default.
- W2049206538 cites W2332712348 @default.
- W2049206538 cites W2333258328 @default.
- W2049206538 cites W4240574896 @default.
- W2049206538 cites W4252684946 @default.
- W2049206538 doi "https://doi.org/10.1074/jbc.m114.616193" @default.
- W2049206538 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4276885" @default.
- W2049206538 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25378410" @default.
- W2049206538 hasPublicationYear "2014" @default.
- W2049206538 type Work @default.
- W2049206538 sameAs 2049206538 @default.
- W2049206538 citedByCount "31" @default.
- W2049206538 countsByYear W20492065382015 @default.
- W2049206538 countsByYear W20492065382016 @default.
- W2049206538 countsByYear W20492065382017 @default.
- W2049206538 countsByYear W20492065382018 @default.
- W2049206538 countsByYear W20492065382019 @default.
- W2049206538 countsByYear W20492065382020 @default.
- W2049206538 countsByYear W20492065382021 @default.
- W2049206538 countsByYear W20492065382022 @default.