Matches in SemOpenAlex for { <https://semopenalex.org/work/W2049237551> ?p ?o ?g. }
- W2049237551 endingPage "33" @default.
- W2049237551 startingPage "25" @default.
- W2049237551 abstract "This paper explores a fast algorithm to select relevant predictors for the response process with panel count data. Based on the lasso penalized pseudo-objective function derived from an estimating equation, the coordinate ascent accelerates the estimation of regression coefficients. The coordinate ascent algorithm is capable of selecting relevant predictors for underdetermined problems where the number of predictors far exceeds the number of cases. It relies on a tuning constant that can be chosen by generalized cross-validation. Our tests on simulated and real data demonstrate the virtue of penalized regression in model building and prediction for panel count data in ultrahigh-dimensional settings." @default.
- W2049237551 created "2016-06-24" @default.
- W2049237551 creator A5012771471 @default.
- W2049237551 creator A5044684896 @default.
- W2049237551 date "2012-01-01" @default.
- W2049237551 modified "2023-09-23" @default.
- W2049237551 title "Coordinate ascent for penalized semiparametric regression on high-dimensional panel count data" @default.
- W2049237551 cites W1540764732 @default.
- W2049237551 cites W1597317658 @default.
- W2049237551 cites W1764447967 @default.
- W2049237551 cites W1965125844 @default.
- W2049237551 cites W1966701961 @default.
- W2049237551 cites W1968694834 @default.
- W2049237551 cites W1976706787 @default.
- W2049237551 cites W1986705681 @default.
- W2049237551 cites W1986931325 @default.
- W2049237551 cites W1994309289 @default.
- W2049237551 cites W2033914841 @default.
- W2049237551 cites W2046475261 @default.
- W2049237551 cites W2052418342 @default.
- W2049237551 cites W2053779301 @default.
- W2049237551 cites W2053943100 @default.
- W2049237551 cites W2056636001 @default.
- W2049237551 cites W2063978378 @default.
- W2049237551 cites W2070094080 @default.
- W2049237551 cites W2074682976 @default.
- W2049237551 cites W2116079122 @default.
- W2049237551 cites W2122189635 @default.
- W2049237551 cites W2123633327 @default.
- W2049237551 cites W2127300249 @default.
- W2049237551 cites W2138019504 @default.
- W2049237551 cites W2141929736 @default.
- W2049237551 cites W2145159920 @default.
- W2049237551 cites W2157076315 @default.
- W2049237551 cites W3000332379 @default.
- W2049237551 cites W3031967244 @default.
- W2049237551 cites W3098834468 @default.
- W2049237551 cites W3105034597 @default.
- W2049237551 cites W3105340263 @default.
- W2049237551 cites W3105543546 @default.
- W2049237551 cites W4229858359 @default.
- W2049237551 cites W4233598730 @default.
- W2049237551 cites W4238109618 @default.
- W2049237551 cites W4244113778 @default.
- W2049237551 cites W4247649469 @default.
- W2049237551 cites W4294541781 @default.
- W2049237551 doi "https://doi.org/10.1016/j.csda.2011.07.003" @default.
- W2049237551 hasPublicationYear "2012" @default.
- W2049237551 type Work @default.
- W2049237551 sameAs 2049237551 @default.
- W2049237551 citedByCount "5" @default.
- W2049237551 countsByYear W20492375512014 @default.
- W2049237551 countsByYear W20492375512015 @default.
- W2049237551 countsByYear W20492375512016 @default.
- W2049237551 countsByYear W20492375512020 @default.
- W2049237551 countsByYear W20492375512022 @default.
- W2049237551 crossrefType "journal-article" @default.
- W2049237551 hasAuthorship W2049237551A5012771471 @default.
- W2049237551 hasAuthorship W2049237551A5044684896 @default.
- W2049237551 hasConcept C100906024 @default.
- W2049237551 hasConcept C102366305 @default.
- W2049237551 hasConcept C105795698 @default.
- W2049237551 hasConcept C11413529 @default.
- W2049237551 hasConcept C136764020 @default.
- W2049237551 hasConcept C152877465 @default.
- W2049237551 hasConcept C157553263 @default.
- W2049237551 hasConcept C179690561 @default.
- W2049237551 hasConcept C19539793 @default.
- W2049237551 hasConcept C199360897 @default.
- W2049237551 hasConcept C204016326 @default.
- W2049237551 hasConcept C27403532 @default.
- W2049237551 hasConcept C2777027219 @default.
- W2049237551 hasConcept C28826006 @default.
- W2049237551 hasConcept C33643355 @default.
- W2049237551 hasConcept C33923547 @default.
- W2049237551 hasConcept C37616216 @default.
- W2049237551 hasConcept C41008148 @default.
- W2049237551 hasConcept C49781872 @default.
- W2049237551 hasConcept C78297888 @default.
- W2049237551 hasConcept C83546350 @default.
- W2049237551 hasConceptScore W2049237551C100906024 @default.
- W2049237551 hasConceptScore W2049237551C102366305 @default.
- W2049237551 hasConceptScore W2049237551C105795698 @default.
- W2049237551 hasConceptScore W2049237551C11413529 @default.
- W2049237551 hasConceptScore W2049237551C136764020 @default.
- W2049237551 hasConceptScore W2049237551C152877465 @default.
- W2049237551 hasConceptScore W2049237551C157553263 @default.
- W2049237551 hasConceptScore W2049237551C179690561 @default.
- W2049237551 hasConceptScore W2049237551C19539793 @default.
- W2049237551 hasConceptScore W2049237551C199360897 @default.
- W2049237551 hasConceptScore W2049237551C204016326 @default.
- W2049237551 hasConceptScore W2049237551C27403532 @default.
- W2049237551 hasConceptScore W2049237551C2777027219 @default.
- W2049237551 hasConceptScore W2049237551C28826006 @default.
- W2049237551 hasConceptScore W2049237551C33643355 @default.
- W2049237551 hasConceptScore W2049237551C33923547 @default.
- W2049237551 hasConceptScore W2049237551C37616216 @default.
- W2049237551 hasConceptScore W2049237551C41008148 @default.