Matches in SemOpenAlex for { <https://semopenalex.org/work/W2049249785> ?p ?o ?g. }
- W2049249785 endingPage "310" @default.
- W2049249785 startingPage "277" @default.
- W2049249785 abstract "The origin of Arenal basaltic andesite can be explained in terms of fractional crystallization of a parental high-alumina basalt (HAB), which assimilates crustal rocks during its storage, ascent and evolution. Contamination of this melt by Tertiary calc-alkalic intrusives (quartz–diorite and granite, with 87Sr/86Sr ratios ranging 0.70381–0.70397, nearly identical with those of the Arenal lavas) occurs at upper crustal levels, following the interaction of ascending basaltic magma masses with gabbroic–anorthositic layers. Fragments of these layers are found as inclusions within Arenal lavas and tephra and may show reaction rims (1–5 mm thick, consisting of augite, hypersthene, bytownitic–anorthitic plagioclase, and granular titanomagnetite) at the gabbro–lava interface. These reaction rims indicate that complete `assimilation' was prevented since the temperature of the host basaltic magma was not high enough to melt the gabbroic materials (whose mineral phases are nearly identical to the early formed liquidus phases in the differentiating HAB). Olivine gabbros crystallized at pressure of about 5–6 kbar and equilibrated with the parental HAB at pressures of 3–6 kbar (both under anhydrous and hydrous conditions), and temperatures ranging 1000–1100°C. In particular, `deeper' interactions between the mafic inclusions and the hydrous basaltic melt (i.e., with about 3.5 wt.% H2O) are likely to occur at 5.4 (±0.4) kbar and temperatures approaching 1100°C. The olivine gabbros are thus interpreted as cumulates which represent crystallized portions of earlier Arenal-type basalts. Some of the gabbros have been `mildly' tectonized and recrystallized to give mafic granulites that may exhibit a distinct foliation. Below Arenal volcano a zoned magma chamber evolved prior the last eruptive cycle: three distinct andesitic magma layers were produced by simple AFC of a high-alumina basalt (HAB) with assimilation of Tertiary quartz–dioritic and granitic rocks. Early erupted 1968 tephra and 1969 lavas (which represent the first two layers of the upper part of a zoned magma chamber) were produced by simple AFC, with fractionation of plagioclase, pyroxene and magnetite and concomitant assimilation of quartz–dioritic rocks. Assimilation rates were constant (r1=0.33) for a relative mass of magma remaining of 0.77–0.80, respectively. Lavas erupted around 1974 are less differentiated and represent the `primitive andesitic magma type' residing within the middle–lower part of the chamber. These lavas were also produced by simple AFC: assimilation rates and the relative mass of magma remaining increased of about 10%, respectively (r1=0.36, and F=0.89). Ba enrichment of the above lavas is related to selective assimilation of Ba from Tertiary granitic rocks. Lava eruption occurred as a dynamic response to the intrusion of a new magma into the old reservoir. This process caused the instability of the zoned magma column inducing syneruptive mixing between portions of two contiguous magma layers (both within the column itself and at lower levels where the new basalt was intruded into the reservoir). Syneruptive mixing (mingling) within the middle–upper part of the chamber involved fractions of earlier gabbroic cumulitic materials (lavas erupted around 1970). On the contrary, within the lower part of the chamber, mixing between the intruded HAB and the residing andesitic melt was followed by simple fractional crystallization (FC) of the hybrid magma layer (lavas erupted in 1978–1980). By that time the original magma chamber was completely evacuated. Lavas erupted in 1982/1984 were thus modelled by means of `open system' AFCRE (i.e., AFC with continuous recharge of a fractionating magma batch during eruption): in this case assimilation rates were r1=0.33 and F=0.86. Recharge rates are slightly higher than extrusion rates and may reflect differences in density (between extruded and injected magmas), together with dynamic fluctuations of these parameters during eruption. Ba and LREE (La, Ce) enrichments of these lavas can be related to selective assimilation of Tertiary granitic and quartz–dioritic rocks. Calculated contents for Zr, Y and other REE are in acceptable agreement with the observed values. It is concluded that simple AFC occurs between two distinct eruption cycles and is typical of a period of repose or mild and decreasing volcanic activity. On the contrary, magma mixing, eventually followed by fractional crystallization (FC) of the hybrid magma layer, occurs during an ongoing eruption. Open-system AFCRE is only operative when the original magma chamber has been totally replenished by the new basaltic magma, and seems a prelude to the progressive ceasing of a major eruptive cycle." @default.
- W2049249785 created "2016-06-24" @default.
- W2049249785 creator A5045437756 @default.
- W2049249785 date "1998-11-01" @default.
- W2049249785 modified "2023-09-27" @default.
- W2049249785 title "Intracrustal origin of Arenal basaltic andesite in the light of solid–melt interactions and related compositional buffering" @default.
- W2049249785 cites W1675648967 @default.
- W2049249785 cites W1967910599 @default.
- W2049249785 cites W1968025245 @default.
- W2049249785 cites W1972256629 @default.
- W2049249785 cites W1972899505 @default.
- W2049249785 cites W1975757281 @default.
- W2049249785 cites W1979402068 @default.
- W2049249785 cites W1982269195 @default.
- W2049249785 cites W1985957692 @default.
- W2049249785 cites W1991403488 @default.
- W2049249785 cites W1991623024 @default.
- W2049249785 cites W1994057479 @default.
- W2049249785 cites W1995138711 @default.
- W2049249785 cites W1996471524 @default.
- W2049249785 cites W1998191793 @default.
- W2049249785 cites W2002708684 @default.
- W2049249785 cites W2003916273 @default.
- W2049249785 cites W2007389351 @default.
- W2049249785 cites W2007684610 @default.
- W2049249785 cites W2024575502 @default.
- W2049249785 cites W2027169032 @default.
- W2049249785 cites W2027322197 @default.
- W2049249785 cites W2028992624 @default.
- W2049249785 cites W2029302323 @default.
- W2049249785 cites W2029699274 @default.
- W2049249785 cites W2033084766 @default.
- W2049249785 cites W2033968507 @default.
- W2049249785 cites W2035363070 @default.
- W2049249785 cites W2036442289 @default.
- W2049249785 cites W2037290269 @default.
- W2049249785 cites W2038177379 @default.
- W2049249785 cites W2038475296 @default.
- W2049249785 cites W2039261439 @default.
- W2049249785 cites W2041180036 @default.
- W2049249785 cites W2042572559 @default.
- W2049249785 cites W2042692134 @default.
- W2049249785 cites W2046019962 @default.
- W2049249785 cites W2047685872 @default.
- W2049249785 cites W2048116571 @default.
- W2049249785 cites W2052352503 @default.
- W2049249785 cites W2053483240 @default.
- W2049249785 cites W2054232978 @default.
- W2049249785 cites W2054578927 @default.
- W2049249785 cites W2055014999 @default.
- W2049249785 cites W2056910670 @default.
- W2049249785 cites W2057015318 @default.
- W2049249785 cites W2058543257 @default.
- W2049249785 cites W2062367490 @default.
- W2049249785 cites W2063079873 @default.
- W2049249785 cites W2066025727 @default.
- W2049249785 cites W2075305921 @default.
- W2049249785 cites W2077578738 @default.
- W2049249785 cites W2081985254 @default.
- W2049249785 cites W2081999089 @default.
- W2049249785 cites W2082450384 @default.
- W2049249785 cites W2085328060 @default.
- W2049249785 cites W2086811936 @default.
- W2049249785 cites W2087292109 @default.
- W2049249785 cites W2088644964 @default.
- W2049249785 cites W2092836793 @default.
- W2049249785 cites W2093329912 @default.
- W2049249785 cites W2093546348 @default.
- W2049249785 cites W2153399893 @default.
- W2049249785 cites W2155146104 @default.
- W2049249785 cites W2162557247 @default.
- W2049249785 cites W2167893737 @default.
- W2049249785 cites W2292134031 @default.
- W2049249785 cites W2326714219 @default.
- W2049249785 cites W2330756480 @default.
- W2049249785 cites W2492104217 @default.
- W2049249785 cites W2598242035 @default.
- W2049249785 cites W2900224346 @default.
- W2049249785 cites W2900691513 @default.
- W2049249785 cites W2914932232 @default.
- W2049249785 cites W4205749704 @default.
- W2049249785 cites W4242544045 @default.
- W2049249785 cites W4256556045 @default.
- W2049249785 doi "https://doi.org/10.1016/s0377-0273(98)00083-3" @default.
- W2049249785 hasPublicationYear "1998" @default.
- W2049249785 type Work @default.
- W2049249785 sameAs 2049249785 @default.
- W2049249785 citedByCount "23" @default.
- W2049249785 countsByYear W20492497852012 @default.
- W2049249785 countsByYear W20492497852014 @default.
- W2049249785 countsByYear W20492497852018 @default.
- W2049249785 countsByYear W20492497852020 @default.
- W2049249785 countsByYear W20492497852022 @default.
- W2049249785 crossrefType "journal-article" @default.
- W2049249785 hasAuthorship W2049249785A5045437756 @default.
- W2049249785 hasConcept C11872896 @default.
- W2049249785 hasConcept C120806208 @default.
- W2049249785 hasConcept C127313418 @default.