Matches in SemOpenAlex for { <https://semopenalex.org/work/W2049258903> ?p ?o ?g. }
- W2049258903 endingPage "42" @default.
- W2049258903 startingPage "33" @default.
- W2049258903 abstract "BackgroundKidney disease alters the pharmacokinetic disposition of many medications, requiring dosage adjustment to maintain therapeutic serum concentrations. The Cockcroft-Gault (CG) equation is used for pharmacokinetic studies and drug dosage adjustments, but the Modification of Diet in Renal Disease (MDRD) Study equation is more accurate and more often reported by clinical laboratories than the CG equation.Study DesignDiagnostic test study.Settings & ParticipantsPooled data set for 5,504 participants from 6 research studies and 4 clinical populations with measured glomerular filtration rate (GFR).Index TestEstimated kidney function using the MDRD Study and CG equations incorporating actual (CG) or ideal body weight (CGIBW) and standardized serum creatinine concentrations.Reference TestMeasured GFR assessed by using iodine-125–iothalamate urinary clearance.OutcomeConcordance of assigned kidney function categories designated by the Food and Drug Administration (FDA) Guidance for Industry for pharmacokinetic studies and recommended dosages of 15 medications cleared by the kidneys.ResultsConcordance of kidney function estimates with measured GFR for FDA-assigned kidney function categories was 78% for the MDRD Study equation compared with 73% for the CG equation (P < 0.001) and 66% for the CGIBW equation (P < 0.001). Concordance between the MDRD Study equation and CG and CGIBW equations was 78% and 75%, respectively (P < 0.001). Concordance of kidney function estimates with measured GFR for recommended drug dosages was 88% for MDRD Study equation compared with 85% for the CG equation (P < 0.001) and 82% for the CGIBW equation (P < 0.001), with lower concordance when dosing recommendations for drugs included narrow GFR ranges. Concordance rates between the CG and CGIBW equations and MDRD Study equation were 89% and 88%, respectively (P < 0.05).LimitationsResults based on simulation rather than pharmacokinetic studies. Outcome was drug dosage recommendations, rather than observed drug efficacy and safety.ConclusionsThe MDRD Study equation can also be used for pharmacokinetic studies and drug dosage adjustments. As more accurate GFR-estimating equations are developed, they should be used for these purposes. Kidney disease alters the pharmacokinetic disposition of many medications, requiring dosage adjustment to maintain therapeutic serum concentrations. The Cockcroft-Gault (CG) equation is used for pharmacokinetic studies and drug dosage adjustments, but the Modification of Diet in Renal Disease (MDRD) Study equation is more accurate and more often reported by clinical laboratories than the CG equation. Diagnostic test study. Pooled data set for 5,504 participants from 6 research studies and 4 clinical populations with measured glomerular filtration rate (GFR). Estimated kidney function using the MDRD Study and CG equations incorporating actual (CG) or ideal body weight (CGIBW) and standardized serum creatinine concentrations. Measured GFR assessed by using iodine-125–iothalamate urinary clearance. Concordance of assigned kidney function categories designated by the Food and Drug Administration (FDA) Guidance for Industry for pharmacokinetic studies and recommended dosages of 15 medications cleared by the kidneys. Concordance of kidney function estimates with measured GFR for FDA-assigned kidney function categories was 78% for the MDRD Study equation compared with 73% for the CG equation (P < 0.001) and 66% for the CGIBW equation (P < 0.001). Concordance between the MDRD Study equation and CG and CGIBW equations was 78% and 75%, respectively (P < 0.001). Concordance of kidney function estimates with measured GFR for recommended drug dosages was 88% for MDRD Study equation compared with 85% for the CG equation (P < 0.001) and 82% for the CGIBW equation (P < 0.001), with lower concordance when dosing recommendations for drugs included narrow GFR ranges. Concordance rates between the CG and CGIBW equations and MDRD Study equation were 89% and 88%, respectively (P < 0.05). Results based on simulation rather than pharmacokinetic studies. Outcome was drug dosage recommendations, rather than observed drug efficacy and safety. The MDRD Study equation can also be used for pharmacokinetic studies and drug dosage adjustments. As more accurate GFR-estimating equations are developed, they should be used for these purposes." @default.
- W2049258903 created "2016-06-24" @default.
- W2049258903 creator A5012465422 @default.
- W2049258903 creator A5016894949 @default.
- W2049258903 creator A5030775427 @default.
- W2049258903 creator A5032690087 @default.
- W2049258903 creator A5040217042 @default.
- W2049258903 creator A5047317486 @default.
- W2049258903 creator A5051372173 @default.
- W2049258903 creator A5055479743 @default.
- W2049258903 creator A5063382614 @default.
- W2049258903 creator A5067316228 @default.
- W2049258903 creator A5084057531 @default.
- W2049258903 date "2009-07-01" @default.
- W2049258903 modified "2023-10-16" @default.
- W2049258903 title "Comparison of Drug Dosing Recommendations Based on Measured GFR and Kidney Function Estimating Equations" @default.
- W2049258903 cites W1267113676 @default.
- W2049258903 cites W1550111394 @default.
- W2049258903 cites W1966337012 @default.
- W2049258903 cites W1999372188 @default.
- W2049258903 cites W2010312935 @default.
- W2049258903 cites W2010485212 @default.
- W2049258903 cites W2051236746 @default.
- W2049258903 cites W2053181528 @default.
- W2049258903 cites W2055864845 @default.
- W2049258903 cites W2068718128 @default.
- W2049258903 cites W2073742622 @default.
- W2049258903 cites W2084265116 @default.
- W2049258903 cites W2104443849 @default.
- W2049258903 cites W2105493454 @default.
- W2049258903 cites W2114019720 @default.
- W2049258903 cites W2123653031 @default.
- W2049258903 cites W2129620802 @default.
- W2049258903 cites W2139087994 @default.
- W2049258903 cites W2140445493 @default.
- W2049258903 cites W2144680010 @default.
- W2049258903 cites W2146105386 @default.
- W2049258903 cites W2153899710 @default.
- W2049258903 cites W2154322342 @default.
- W2049258903 cites W2155080636 @default.
- W2049258903 cites W2156074664 @default.
- W2049258903 cites W2156758490 @default.
- W2049258903 cites W2161209312 @default.
- W2049258903 cites W2293035635 @default.
- W2049258903 cites W2326669457 @default.
- W2049258903 doi "https://doi.org/10.1053/j.ajkd.2009.03.008" @default.
- W2049258903 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2756662" @default.
- W2049258903 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/19446939" @default.
- W2049258903 hasPublicationYear "2009" @default.
- W2049258903 type Work @default.
- W2049258903 sameAs 2049258903 @default.
- W2049258903 citedByCount "245" @default.
- W2049258903 countsByYear W20492589032012 @default.
- W2049258903 countsByYear W20492589032013 @default.
- W2049258903 countsByYear W20492589032014 @default.
- W2049258903 countsByYear W20492589032015 @default.
- W2049258903 countsByYear W20492589032016 @default.
- W2049258903 countsByYear W20492589032017 @default.
- W2049258903 countsByYear W20492589032018 @default.
- W2049258903 countsByYear W20492589032019 @default.
- W2049258903 countsByYear W20492589032020 @default.
- W2049258903 countsByYear W20492589032021 @default.
- W2049258903 countsByYear W20492589032022 @default.
- W2049258903 countsByYear W20492589032023 @default.
- W2049258903 crossrefType "journal-article" @default.
- W2049258903 hasAuthorship W2049258903A5012465422 @default.
- W2049258903 hasAuthorship W2049258903A5016894949 @default.
- W2049258903 hasAuthorship W2049258903A5030775427 @default.
- W2049258903 hasAuthorship W2049258903A5032690087 @default.
- W2049258903 hasAuthorship W2049258903A5040217042 @default.
- W2049258903 hasAuthorship W2049258903A5047317486 @default.
- W2049258903 hasAuthorship W2049258903A5051372173 @default.
- W2049258903 hasAuthorship W2049258903A5055479743 @default.
- W2049258903 hasAuthorship W2049258903A5063382614 @default.
- W2049258903 hasAuthorship W2049258903A5067316228 @default.
- W2049258903 hasAuthorship W2049258903A5084057531 @default.
- W2049258903 hasBestOaLocation W20492589031 @default.
- W2049258903 hasConcept C105795698 @default.
- W2049258903 hasConcept C112705442 @default.
- W2049258903 hasConcept C126322002 @default.
- W2049258903 hasConcept C126894567 @default.
- W2049258903 hasConcept C138944611 @default.
- W2049258903 hasConcept C159641895 @default.
- W2049258903 hasConcept C160798450 @default.
- W2049258903 hasConcept C162156334 @default.
- W2049258903 hasConcept C204016326 @default.
- W2049258903 hasConcept C2777288759 @default.
- W2049258903 hasConcept C2778653478 @default.
- W2049258903 hasConcept C2780035454 @default.
- W2049258903 hasConcept C2780091579 @default.
- W2049258903 hasConcept C2780306776 @default.
- W2049258903 hasConcept C33923547 @default.
- W2049258903 hasConcept C49781872 @default.
- W2049258903 hasConcept C71924100 @default.
- W2049258903 hasConcept C98274493 @default.
- W2049258903 hasConceptScore W2049258903C105795698 @default.
- W2049258903 hasConceptScore W2049258903C112705442 @default.
- W2049258903 hasConceptScore W2049258903C126322002 @default.