Matches in SemOpenAlex for { <https://semopenalex.org/work/W2049271682> ?p ?o ?g. }
- W2049271682 endingPage "329" @default.
- W2049271682 startingPage "317" @default.
- W2049271682 abstract "The main purpose of this study is to compare the following six GIS-based models for susceptibility mapping of earthquake triggered landslides: bivariate statistics (BS), logistic regression (LR), artificial neural networks (ANN), and three types of support vector machine (SVM) models that use the three different kernel functions linear, polynomial, and radial basis. The models are applied in a tributary watershed of the Fu River, a tributary of the Jialing River, which is part of the area of China affected by the May 12, 2008 Wenchuan earthquake. For this purpose, eleven thematic data layers are used: landslide inventory, slope angle, aspect, elevation, curvature, distance from drainages, topographic wetness index (TWI), distance from main roads, distance from surface rupture, peak ground acceleration (PGA), and lithology. The data layers were specifically constructed for analysis in this study. In the subsequent stage of the study, susceptibility maps were produced using the six models and the same input for each one. The validations of the resulting susceptibility maps were performed and compared by means of two values of area under curve (AUC) that represent the respective success rates and prediction rates. The AUC values obtained from all six results showed that the LR model provides the highest success rate (AUC=80.34) and the highest prediction rate (AUC=80.27). The SVM (radial basis function) model generates the second-highest success rate (AUC=80.302) and the second-highest prediction rate (AUC=80.151), which are close to the value from the LR model. The results using the SVM (linear) model show the lowest AUC values. The AUC values from the SVM (linear) model are only 72.52 (success rates) and 72.533 (prediction rates). Furthermore, the results also show that the radial basis function is the most appropriate kernel function of the three kernel functions applied using the SVM model for susceptibility mapping of earthquake triggered landslides in the study area. The paper also provides a counter-example for the widely held notion that validation performances of the results from application of the models obtained from soft computing techniques (such as ANN and SVM) are higher than those from applications of LR and BA models." @default.
- W2049271682 created "2016-06-24" @default.
- W2049271682 creator A5067057709 @default.
- W2049271682 creator A5069090047 @default.
- W2049271682 creator A5077706881 @default.
- W2049271682 creator A5084677743 @default.
- W2049271682 date "2012-09-01" @default.
- W2049271682 modified "2023-10-16" @default.
- W2049271682 title "Comparison of different models for susceptibility mapping of earthquake triggered landslides related with the 2008 Wenchuan earthquake in China" @default.
- W2049271682 cites W1558276100 @default.
- W2049271682 cites W1969477520 @default.
- W2049271682 cites W1979486410 @default.
- W2049271682 cites W1981646498 @default.
- W2049271682 cites W1982221962 @default.
- W2049271682 cites W1982948123 @default.
- W2049271682 cites W1988816342 @default.
- W2049271682 cites W1997556502 @default.
- W2049271682 cites W1997757318 @default.
- W2049271682 cites W1998439728 @default.
- W2049271682 cites W2000380895 @default.
- W2049271682 cites W2008504358 @default.
- W2049271682 cites W2010406160 @default.
- W2049271682 cites W2013002337 @default.
- W2049271682 cites W2017458088 @default.
- W2049271682 cites W2022122430 @default.
- W2049271682 cites W2023203753 @default.
- W2049271682 cites W2028124403 @default.
- W2049271682 cites W2029608886 @default.
- W2049271682 cites W2030389398 @default.
- W2049271682 cites W2030593186 @default.
- W2049271682 cites W2035747501 @default.
- W2049271682 cites W2042605952 @default.
- W2049271682 cites W2065125025 @default.
- W2049271682 cites W2071068479 @default.
- W2049271682 cites W2081345111 @default.
- W2049271682 cites W2082622325 @default.
- W2049271682 cites W2093630784 @default.
- W2049271682 cites W2100294832 @default.
- W2049271682 cites W2103540160 @default.
- W2049271682 cites W2122447387 @default.
- W2049271682 cites W2127661662 @default.
- W2049271682 cites W2128964295 @default.
- W2049271682 cites W2130039765 @default.
- W2049271682 cites W2134955829 @default.
- W2049271682 cites W2143192068 @default.
- W2049271682 cites W2145693114 @default.
- W2049271682 cites W2147663465 @default.
- W2049271682 cites W2161920802 @default.
- W2049271682 cites W2162196186 @default.
- W2049271682 cites W2225116552 @default.
- W2049271682 cites W2227288159 @default.
- W2049271682 cites W2231559881 @default.
- W2049271682 cites W2236234032 @default.
- W2049271682 cites W2395629945 @default.
- W2049271682 doi "https://doi.org/10.1016/j.cageo.2012.01.002" @default.
- W2049271682 hasPublicationYear "2012" @default.
- W2049271682 type Work @default.
- W2049271682 sameAs 2049271682 @default.
- W2049271682 citedByCount "201" @default.
- W2049271682 countsByYear W20492716822012 @default.
- W2049271682 countsByYear W20492716822013 @default.
- W2049271682 countsByYear W20492716822014 @default.
- W2049271682 countsByYear W20492716822015 @default.
- W2049271682 countsByYear W20492716822016 @default.
- W2049271682 countsByYear W20492716822017 @default.
- W2049271682 countsByYear W20492716822018 @default.
- W2049271682 countsByYear W20492716822019 @default.
- W2049271682 countsByYear W20492716822020 @default.
- W2049271682 countsByYear W20492716822021 @default.
- W2049271682 countsByYear W20492716822022 @default.
- W2049271682 countsByYear W20492716822023 @default.
- W2049271682 crossrefType "journal-article" @default.
- W2049271682 hasAuthorship W2049271682A5067057709 @default.
- W2049271682 hasAuthorship W2049271682A5069090047 @default.
- W2049271682 hasAuthorship W2049271682A5077706881 @default.
- W2049271682 hasAuthorship W2049271682A5084677743 @default.
- W2049271682 hasConcept C11097651 @default.
- W2049271682 hasConcept C127313418 @default.
- W2049271682 hasConcept C165205528 @default.
- W2049271682 hasConcept C166957645 @default.
- W2049271682 hasConcept C186295008 @default.
- W2049271682 hasConcept C191935318 @default.
- W2049271682 hasConcept C205649164 @default.
- W2049271682 hasConcept C23509580 @default.
- W2049271682 hasConceptScore W2049271682C11097651 @default.
- W2049271682 hasConceptScore W2049271682C127313418 @default.
- W2049271682 hasConceptScore W2049271682C165205528 @default.
- W2049271682 hasConceptScore W2049271682C166957645 @default.
- W2049271682 hasConceptScore W2049271682C186295008 @default.
- W2049271682 hasConceptScore W2049271682C191935318 @default.
- W2049271682 hasConceptScore W2049271682C205649164 @default.
- W2049271682 hasConceptScore W2049271682C23509580 @default.
- W2049271682 hasLocation W20492716821 @default.
- W2049271682 hasOpenAccess W2049271682 @default.
- W2049271682 hasPrimaryLocation W20492716821 @default.
- W2049271682 hasRelatedWork W1978633116 @default.
- W2049271682 hasRelatedWork W2347721420 @default.
- W2049271682 hasRelatedWork W2350272968 @default.