Matches in SemOpenAlex for { <https://semopenalex.org/work/W2049660106> ?p ?o ?g. }
- W2049660106 endingPage "359" @default.
- W2049660106 startingPage "349" @default.
- W2049660106 abstract "Three soil images with different spatial arrangements and porosities ranging from 5% to 47% were analyzed to calculate their generalized dimensions (Dq). The first partitioning method applied in these calculations was box-counting, in which a grid is used to study the local distribution of porosity at different scales. In all the images, porosity was found to exhibit multi-scaling behavior in the larger box sizes only, i.e., with side lengths ranging from 64 to 256 pixels. Estimates of Dq were obtained by restricting multifractal analysis (MFA) to these box sizes, but this resulted in very few points for linear regression analysis and only a small number of boxes per size due to image size limitations. The gliding box method was subsequently applied to the same range of box sizes using the multiplier method. This yielded less uncertain Dq values, particularly for negative values of q. The gliding box method was therefore found to be more suitable for MFA where the range of usable scales is narrow. Both the numerical differences between Dq values and their standard errors are discussed." @default.
- W2049660106 created "2016-06-24" @default.
- W2049660106 creator A5009857513 @default.
- W2049660106 creator A5033362012 @default.
- W2049660106 creator A5059289023 @default.
- W2049660106 creator A5078876877 @default.
- W2049660106 creator A5086727046 @default.
- W2049660106 date "2006-10-01" @default.
- W2049660106 modified "2023-10-16" @default.
- W2049660106 title "Comparison of gliding box and box-counting methods in soil image analysis" @default.
- W2049660106 cites W1963580916 @default.
- W2049660106 cites W1967886726 @default.
- W2049660106 cites W1967907264 @default.
- W2049660106 cites W1982949885 @default.
- W2049660106 cites W1984426501 @default.
- W2049660106 cites W2007298029 @default.
- W2049660106 cites W2010236863 @default.
- W2049660106 cites W2011161276 @default.
- W2049660106 cites W2017118246 @default.
- W2049660106 cites W2021107886 @default.
- W2049660106 cites W2028251336 @default.
- W2049660106 cites W2041390068 @default.
- W2049660106 cites W2044402128 @default.
- W2049660106 cites W2047840467 @default.
- W2049660106 cites W2050510332 @default.
- W2049660106 cites W2055902599 @default.
- W2049660106 cites W2056382732 @default.
- W2049660106 cites W2062999340 @default.
- W2049660106 cites W2064603419 @default.
- W2049660106 cites W2066331714 @default.
- W2049660106 cites W2082644162 @default.
- W2049660106 cites W2085526093 @default.
- W2049660106 cites W2110593275 @default.
- W2049660106 cites W2133697607 @default.
- W2049660106 cites W2139364442 @default.
- W2049660106 cites W3190521697 @default.
- W2049660106 cites W415441523 @default.
- W2049660106 cites W4256039468 @default.
- W2049660106 doi "https://doi.org/10.1016/j.geoderma.2006.03.009" @default.
- W2049660106 hasPublicationYear "2006" @default.
- W2049660106 type Work @default.
- W2049660106 sameAs 2049660106 @default.
- W2049660106 citedByCount "68" @default.
- W2049660106 countsByYear W20496601062012 @default.
- W2049660106 countsByYear W20496601062013 @default.
- W2049660106 countsByYear W20496601062014 @default.
- W2049660106 countsByYear W20496601062015 @default.
- W2049660106 countsByYear W20496601062016 @default.
- W2049660106 countsByYear W20496601062017 @default.
- W2049660106 countsByYear W20496601062018 @default.
- W2049660106 countsByYear W20496601062019 @default.
- W2049660106 countsByYear W20496601062020 @default.
- W2049660106 countsByYear W20496601062021 @default.
- W2049660106 countsByYear W20496601062022 @default.
- W2049660106 countsByYear W20496601062023 @default.
- W2049660106 crossrefType "journal-article" @default.
- W2049660106 hasAuthorship W2049660106A5009857513 @default.
- W2049660106 hasAuthorship W2049660106A5033362012 @default.
- W2049660106 hasAuthorship W2049660106A5059289023 @default.
- W2049660106 hasAuthorship W2049660106A5078876877 @default.
- W2049660106 hasAuthorship W2049660106A5086727046 @default.
- W2049660106 hasConcept C115051666 @default.
- W2049660106 hasConcept C115961682 @default.
- W2049660106 hasConcept C127313418 @default.
- W2049660106 hasConcept C133905733 @default.
- W2049660106 hasConcept C134306372 @default.
- W2049660106 hasConcept C154945302 @default.
- W2049660106 hasConcept C159985019 @default.
- W2049660106 hasConcept C160633673 @default.
- W2049660106 hasConcept C162494671 @default.
- W2049660106 hasConcept C187320778 @default.
- W2049660106 hasConcept C192562407 @default.
- W2049660106 hasConcept C204323151 @default.
- W2049660106 hasConcept C2524010 @default.
- W2049660106 hasConcept C26546657 @default.
- W2049660106 hasConcept C33923547 @default.
- W2049660106 hasConcept C40636538 @default.
- W2049660106 hasConcept C41008148 @default.
- W2049660106 hasConcept C6648577 @default.
- W2049660106 hasConcept C76155785 @default.
- W2049660106 hasConcept C99008458 @default.
- W2049660106 hasConcept C99844830 @default.
- W2049660106 hasConceptScore W2049660106C115051666 @default.
- W2049660106 hasConceptScore W2049660106C115961682 @default.
- W2049660106 hasConceptScore W2049660106C127313418 @default.
- W2049660106 hasConceptScore W2049660106C133905733 @default.
- W2049660106 hasConceptScore W2049660106C134306372 @default.
- W2049660106 hasConceptScore W2049660106C154945302 @default.
- W2049660106 hasConceptScore W2049660106C159985019 @default.
- W2049660106 hasConceptScore W2049660106C160633673 @default.
- W2049660106 hasConceptScore W2049660106C162494671 @default.
- W2049660106 hasConceptScore W2049660106C187320778 @default.
- W2049660106 hasConceptScore W2049660106C192562407 @default.
- W2049660106 hasConceptScore W2049660106C204323151 @default.
- W2049660106 hasConceptScore W2049660106C2524010 @default.
- W2049660106 hasConceptScore W2049660106C26546657 @default.
- W2049660106 hasConceptScore W2049660106C33923547 @default.
- W2049660106 hasConceptScore W2049660106C40636538 @default.