Matches in SemOpenAlex for { <https://semopenalex.org/work/W2049665754> ?p ?o ?g. }
Showing items 1 to 51 of
51
with 100 items per page.
- W2049665754 endingPage "167" @default.
- W2049665754 startingPage "155" @default.
- W2049665754 abstract "In this paper we continue the investigation into the group of algebras with uniformly distributed invariants, U(k’), and its relation to the Schur subgroup S(K), undertaken in [6, 71. We maintain the notation of [6, 71. In the first section we investigate U(K) for a real quadratic field K. We calculate generators of U(K) explicitly. In the second section we investigate U(K) for other real fields K. We use a recent result by Yamada to show that 1 U(K) : S(K)/ is infinite for real fields K subject to the restrictions: (1) Q(cJK is cyclic where Q(en) is the least root of unity field containing K. (2) n + 2 (mod 4), and is divisible by at least two distinct primes. We note that a special case of the above result is for K = Q(E~ + .c;‘). In the case where n is odd and divisible by at least two distinct primes then we obtain: S(Q(c, + c;‘)) = S(Q) @o K if and only if n is divisible by a prime congruent to 3 modulo 4. This condition is the exact analog of Yamada’s result on real quadratic fields Q(d1i2) [9, Theorem 7.14, p. 112; 131, viz.: S(Q(d’/“)) = S(Q) @o Q(d1i2) if and only if d is divisible by a prime congruent to 3 modulo 4. In the case where d is not divisible by any prime congruent to 3 modulo 4 then S(K) = U(K)[9,Theorem 7.8, p. 107; 121. As a corollary of the above result we obtain: If (1) K/Q is real of even degree, and (2) the least root of unity field Q(+J containing K has the property that n is odd, divisible by at least 2 distinct primes, and no prime congruent to 1 modulo 4 divides n, then" @default.
- W2049665754 created "2016-06-24" @default.
- W2049665754 creator A5028272986 @default.
- W2049665754 date "1976-11-01" @default.
- W2049665754 modified "2023-09-28" @default.
- W2049665754 title "Uniform distribution and real fields" @default.
- W2049665754 cites W1534790392 @default.
- W2049665754 cites W1767722407 @default.
- W2049665754 cites W1979424372 @default.
- W2049665754 cites W1991832664 @default.
- W2049665754 cites W2069684092 @default.
- W2049665754 cites W2074165180 @default.
- W2049665754 cites W2082304226 @default.
- W2049665754 cites W2140095159 @default.
- W2049665754 cites W3021045634 @default.
- W2049665754 cites W591111729 @default.
- W2049665754 doi "https://doi.org/10.1016/0021-8693(76)90149-6" @default.
- W2049665754 hasPublicationYear "1976" @default.
- W2049665754 type Work @default.
- W2049665754 sameAs 2049665754 @default.
- W2049665754 citedByCount "8" @default.
- W2049665754 crossrefType "journal-article" @default.
- W2049665754 hasAuthorship W2049665754A5028272986 @default.
- W2049665754 hasBestOaLocation W20496657541 @default.
- W2049665754 hasConcept C110121322 @default.
- W2049665754 hasConcept C134306372 @default.
- W2049665754 hasConcept C33923547 @default.
- W2049665754 hasConceptScore W2049665754C110121322 @default.
- W2049665754 hasConceptScore W2049665754C134306372 @default.
- W2049665754 hasConceptScore W2049665754C33923547 @default.
- W2049665754 hasIssue "1" @default.
- W2049665754 hasLocation W20496657541 @default.
- W2049665754 hasOpenAccess W2049665754 @default.
- W2049665754 hasPrimaryLocation W20496657541 @default.
- W2049665754 hasRelatedWork W1509140628 @default.
- W2049665754 hasRelatedWork W1974891317 @default.
- W2049665754 hasRelatedWork W1982304764 @default.
- W2049665754 hasRelatedWork W2044189972 @default.
- W2049665754 hasRelatedWork W2109947312 @default.
- W2049665754 hasRelatedWork W2119821180 @default.
- W2049665754 hasRelatedWork W2313400459 @default.
- W2049665754 hasRelatedWork W2913765211 @default.
- W2049665754 hasRelatedWork W3105615387 @default.
- W2049665754 hasRelatedWork W4245490552 @default.
- W2049665754 hasVolume "43" @default.
- W2049665754 isParatext "false" @default.
- W2049665754 isRetracted "false" @default.
- W2049665754 magId "2049665754" @default.
- W2049665754 workType "article" @default.