Matches in SemOpenAlex for { <https://semopenalex.org/work/W2049673882> ?p ?o ?g. }
- W2049673882 endingPage "199" @default.
- W2049673882 startingPage "189" @default.
- W2049673882 abstract "Cross-Approximate Entropy (Cross-ApEn) is a useful measure to quantify the statistical dissimilarity of two time series. In spite of the advantage of Cross-ApEn over its one-dimensional counterpart (Approximate Entropy), only a few studies have applied it to biomedical signals, mainly due to its high computational cost. In this paper, we propose a fast GPU-based implementation of the Cross-ApEn that makes feasible its use over a large amount of multidimensional data. The scheme followed is fully scalable, thus maximizes the use of the GPU despite of the number of neural signals being processed. The approach consists in processing many trials or epochs simultaneously, with independence of its origin. In the case of MEG data, these trials can proceed from different input channels or subjects. The proposed implementation achieves an average speedup greater than 250× against a CPU parallel version running on a processor containing six cores. A dataset of 30 subjects containing 148 MEG channels (49 epochs of 1024 samples per channel) can be analyzed using our development in about 30 min. The same processing takes 5 days on six cores and 15 days when running on a single core. The speedup is much larger if compared to a basic sequential Matlab® implementation, that would need 58 days per subject. To our knowledge, this is the first contribution of Cross-ApEn measure computation using GPUs. This study demonstrates that this hardware is, to the day, the best option for the signal processing of biomedical data with Cross-ApEn." @default.
- W2049673882 created "2016-06-24" @default.
- W2049673882 creator A5030864457 @default.
- W2049673882 creator A5043513390 @default.
- W2049673882 creator A5046246761 @default.
- W2049673882 creator A5080372994 @default.
- W2049673882 creator A5084671426 @default.
- W2049673882 date "2013-10-01" @default.
- W2049673882 modified "2023-10-11" @default.
- W2049673882 title "Cross-Approximate Entropy parallel computation on GPUs for biomedical signal analysis. Application to MEG recordings" @default.
- W2049673882 cites W1566347475 @default.
- W2049673882 cites W1862394037 @default.
- W2049673882 cites W1985688192 @default.
- W2049673882 cites W1993455338 @default.
- W2049673882 cites W2003288952 @default.
- W2049673882 cites W2005919537 @default.
- W2049673882 cites W2006003884 @default.
- W2049673882 cites W2006892172 @default.
- W2049673882 cites W2007770344 @default.
- W2049673882 cites W2028490525 @default.
- W2049673882 cites W2029330875 @default.
- W2049673882 cites W2043176976 @default.
- W2049673882 cites W2047062262 @default.
- W2049673882 cites W2048392674 @default.
- W2049673882 cites W2052185075 @default.
- W2049673882 cites W2054488209 @default.
- W2049673882 cites W2055741739 @default.
- W2049673882 cites W2056253243 @default.
- W2049673882 cites W2067431903 @default.
- W2049673882 cites W2067750079 @default.
- W2049673882 cites W2069344815 @default.
- W2049673882 cites W2070564056 @default.
- W2049673882 cites W2070630412 @default.
- W2049673882 cites W2071116416 @default.
- W2049673882 cites W2071705943 @default.
- W2049673882 cites W2071974646 @default.
- W2049673882 cites W2072763551 @default.
- W2049673882 cites W2074717395 @default.
- W2049673882 cites W2077204677 @default.
- W2049673882 cites W2085016750 @default.
- W2049673882 cites W2087740844 @default.
- W2049673882 cites W2089460264 @default.
- W2049673882 cites W2091517270 @default.
- W2049673882 cites W2102244548 @default.
- W2049673882 cites W2102623180 @default.
- W2049673882 cites W2108157916 @default.
- W2049673882 cites W2112966028 @default.
- W2049673882 cites W2118352166 @default.
- W2049673882 cites W2119650563 @default.
- W2049673882 cites W2129512194 @default.
- W2049673882 cites W2133250123 @default.
- W2049673882 cites W2134919037 @default.
- W2049673882 cites W2140041787 @default.
- W2049673882 cites W2143628303 @default.
- W2049673882 cites W2313888347 @default.
- W2049673882 cites W4231395527 @default.
- W2049673882 cites W4250981202 @default.
- W2049673882 doi "https://doi.org/10.1016/j.cmpb.2013.07.005" @default.
- W2049673882 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23915803" @default.
- W2049673882 hasPublicationYear "2013" @default.
- W2049673882 type Work @default.
- W2049673882 sameAs 2049673882 @default.
- W2049673882 citedByCount "9" @default.
- W2049673882 countsByYear W20496738822014 @default.
- W2049673882 countsByYear W20496738822015 @default.
- W2049673882 countsByYear W20496738822016 @default.
- W2049673882 countsByYear W20496738822017 @default.
- W2049673882 countsByYear W20496738822018 @default.
- W2049673882 countsByYear W20496738822021 @default.
- W2049673882 countsByYear W20496738822022 @default.
- W2049673882 crossrefType "journal-article" @default.
- W2049673882 hasAuthorship W2049673882A5030864457 @default.
- W2049673882 hasAuthorship W2049673882A5043513390 @default.
- W2049673882 hasAuthorship W2049673882A5046246761 @default.
- W2049673882 hasAuthorship W2049673882A5080372994 @default.
- W2049673882 hasAuthorship W2049673882A5084671426 @default.
- W2049673882 hasConcept C104267543 @default.
- W2049673882 hasConcept C106301342 @default.
- W2049673882 hasConcept C111919701 @default.
- W2049673882 hasConcept C11413529 @default.
- W2049673882 hasConcept C121332964 @default.
- W2049673882 hasConcept C153180895 @default.
- W2049673882 hasConcept C154945302 @default.
- W2049673882 hasConcept C173608175 @default.
- W2049673882 hasConcept C2780365114 @default.
- W2049673882 hasConcept C41008148 @default.
- W2049673882 hasConcept C45374587 @default.
- W2049673882 hasConcept C459310 @default.
- W2049673882 hasConcept C48044578 @default.
- W2049673882 hasConcept C62520636 @default.
- W2049673882 hasConcept C68339613 @default.
- W2049673882 hasConcept C77088390 @default.
- W2049673882 hasConcept C84462506 @default.
- W2049673882 hasConcept C86859247 @default.
- W2049673882 hasConcept C9390403 @default.
- W2049673882 hasConceptScore W2049673882C104267543 @default.
- W2049673882 hasConceptScore W2049673882C106301342 @default.
- W2049673882 hasConceptScore W2049673882C111919701 @default.