Matches in SemOpenAlex for { <https://semopenalex.org/work/W2049757103> ?p ?o ?g. }
- W2049757103 endingPage "678" @default.
- W2049757103 startingPage "671" @default.
- W2049757103 abstract "Metal oxide nanoparticles are promising materials in applications for fuel cells, gas sensors and fine chemical catalysis. Their functionality depends excessively on composition, structure as well as synthesis and processing conditions. Continuous hydrothermal flow synthesis (CHFS) reactors are an effective technology to make nanoceramics. In order to increase sample throughput of CHFS, a manual high-throughput continuous hydrothermal (HiTCH) flow synthesis process capable of formulating scores of samples per day was developed. More recently, a fully automated nanoceramics synthesis platform called RAMSI (rapid automated synthesis instrument) based on the HiTCH synthesis technology was developed. When large numbers of nanoceramics are made and formulated into appropriate libraries, automated analytical instruments can be used to allow collection of a large amount of useful data. This paper describes the information flow management system of RAMSI (as well as CHFS) and the data mining system for supporting discovery, QSAR (quantitative structure–activity relationship) modeling and DoE (design of experiments). Case studies demonstrating the use of the high-throughput data mining system are presented. These include clustering of Raman spectra, interpretation of X-ray diffraction (XRD) measurements, and QSAR model building linking XRD data and photocatalytic properties. A genetic algorithm method for DoE is also presented that can guide the experiments to search optimal XRD patterns." @default.
- W2049757103 created "2016-06-24" @default.
- W2049757103 creator A5027264311 @default.
- W2049757103 creator A5048521734 @default.
- W2049757103 creator A5049692788 @default.
- W2049757103 creator A5076639630 @default.
- W2049757103 creator A5084836349 @default.
- W2049757103 date "2011-04-01" @default.
- W2049757103 modified "2023-09-25" @default.
- W2049757103 title "Data flow modeling, data mining and QSAR in high-throughput discovery of functional nanomaterials" @default.
- W2049757103 cites W1596717185 @default.
- W2049757103 cites W1969501546 @default.
- W2049757103 cites W1973403690 @default.
- W2049757103 cites W1973636270 @default.
- W2049757103 cites W1976797476 @default.
- W2049757103 cites W1980216394 @default.
- W2049757103 cites W1982731868 @default.
- W2049757103 cites W1983016314 @default.
- W2049757103 cites W1992493151 @default.
- W2049757103 cites W1994037745 @default.
- W2049757103 cites W1994707509 @default.
- W2049757103 cites W2000197401 @default.
- W2049757103 cites W2001129966 @default.
- W2049757103 cites W2004919399 @default.
- W2049757103 cites W2009889954 @default.
- W2049757103 cites W2011066195 @default.
- W2049757103 cites W2023165934 @default.
- W2049757103 cites W2024836879 @default.
- W2049757103 cites W2032940476 @default.
- W2049757103 cites W2033473502 @default.
- W2049757103 cites W2038855613 @default.
- W2049757103 cites W2040340841 @default.
- W2049757103 cites W2055069556 @default.
- W2049757103 cites W2055388172 @default.
- W2049757103 cites W2057751711 @default.
- W2049757103 cites W2063609193 @default.
- W2049757103 cites W2080979182 @default.
- W2049757103 cites W2082270124 @default.
- W2049757103 cites W2086200611 @default.
- W2049757103 cites W2093170787 @default.
- W2049757103 cites W2109792728 @default.
- W2049757103 cites W2113408196 @default.
- W2049757103 cites W2140767804 @default.
- W2049757103 cites W2150422630 @default.
- W2049757103 cites W2152658180 @default.
- W2049757103 cites W2160284757 @default.
- W2049757103 cites W2160483975 @default.
- W2049757103 cites W2167870331 @default.
- W2049757103 cites W2167909075 @default.
- W2049757103 cites W2219886491 @default.
- W2049757103 cites W2486760688 @default.
- W2049757103 cites W4243082501 @default.
- W2049757103 doi "https://doi.org/10.1016/j.compchemeng.2010.04.018" @default.
- W2049757103 hasPublicationYear "2011" @default.
- W2049757103 type Work @default.
- W2049757103 sameAs 2049757103 @default.
- W2049757103 citedByCount "22" @default.
- W2049757103 countsByYear W20497571032012 @default.
- W2049757103 countsByYear W20497571032013 @default.
- W2049757103 countsByYear W20497571032015 @default.
- W2049757103 countsByYear W20497571032016 @default.
- W2049757103 countsByYear W20497571032017 @default.
- W2049757103 countsByYear W20497571032018 @default.
- W2049757103 countsByYear W20497571032019 @default.
- W2049757103 countsByYear W20497571032020 @default.
- W2049757103 countsByYear W20497571032021 @default.
- W2049757103 countsByYear W20497571032023 @default.
- W2049757103 crossrefType "journal-article" @default.
- W2049757103 hasAuthorship W2049757103A5027264311 @default.
- W2049757103 hasAuthorship W2049757103A5048521734 @default.
- W2049757103 hasAuthorship W2049757103A5049692788 @default.
- W2049757103 hasAuthorship W2049757103A5076639630 @default.
- W2049757103 hasAuthorship W2049757103A5084836349 @default.
- W2049757103 hasConcept C105795698 @default.
- W2049757103 hasConcept C119857082 @default.
- W2049757103 hasConcept C120665830 @default.
- W2049757103 hasConcept C121332964 @default.
- W2049757103 hasConcept C124101348 @default.
- W2049757103 hasConcept C127413603 @default.
- W2049757103 hasConcept C154945302 @default.
- W2049757103 hasConcept C157764524 @default.
- W2049757103 hasConcept C164126121 @default.
- W2049757103 hasConcept C171250308 @default.
- W2049757103 hasConcept C183696295 @default.
- W2049757103 hasConcept C186060115 @default.
- W2049757103 hasConcept C192562407 @default.
- W2049757103 hasConcept C21880701 @default.
- W2049757103 hasConcept C2985264121 @default.
- W2049757103 hasConcept C33923547 @default.
- W2049757103 hasConcept C40003534 @default.
- W2049757103 hasConcept C41008148 @default.
- W2049757103 hasConcept C55037315 @default.
- W2049757103 hasConcept C555944384 @default.
- W2049757103 hasConcept C73555534 @default.
- W2049757103 hasConcept C76155785 @default.
- W2049757103 hasConcept C86803240 @default.
- W2049757103 hasConceptScore W2049757103C105795698 @default.
- W2049757103 hasConceptScore W2049757103C119857082 @default.