Matches in SemOpenAlex for { <https://semopenalex.org/work/W2049856108> ?p ?o ?g. }
- W2049856108 endingPage "138" @default.
- W2049856108 startingPage "128" @default.
- W2049856108 abstract "Many life-threatening conditions that can be diagnosed early in gestation may be treatable in utero using gene therapy. In order to determine in utero gene transfer efficiency and safety, studies were conducted with fetal rhesus monkeys as a model for the human. Included in these studies were Moloney murine leukemia virus (MLV)-based amphotropic retrovirus, vesicular stomatitis virus-G (VSV-G) pseudotyped MLV, and a VSV-G pseudotyped HIV-1-based vector, all expressing the enhanced green fluorescent protein (EGFP) as a reporter gene and driven by a cytomegalovirus-immediate early promoter (N = 16). Rhesus monkey fetuses were administered viral vector supernatant preparations by the intraperitoneal (ip) (N = 14) or intrahepatic (ih) (N = 2) routes via ultrasound guidance at 55 ± 5 days gestation (late first trimester; term 165 ± 10 days). Fetuses were monitored sonographically, specimens were collected prenatally and postnatally, and tissue harvests were performed at birth or 3 or 6 months postnatal age (3–10 months post-gene transfer). PCR analyses demonstrated that transduced cells were present at ∼1.2% in peripheral blood mononuclear cells from fetuses administered amphotropic MLV, <0.5% in fetuses receiving MLV/VSV-G, and ∼4.2% for the lentiviral vector, which decreased to 2% at birth. Hematopoietic progenitors showed that overall (mean of all time points assessed), ∼25% of the collected colonies were positive for the EGFP transgene with the lentiviral vector, which was significantly greater than results achieved with the MLV-based vector systems (4–9%; P ≤ 0.001–0.016). At necropsy, 0.001–10% of the total genomic DNA was positive for EGFP in most tissues for all groups. EGFP-positive fluorescent cells were found in cell suspensions of thymus, liver, spleen, lymph nodes, cerebral cortex, and bone marrow (0.5–6%). Overall, the results of these studies have shown: (1Bennett M.J. Reliable prenatal diagnosis of Canavan disease (aspartoacylase deficiency): Comparison of enzymatic and metabolite analysis.J. Inherit. Metab. Dis. 1993; 16: 831-836Crossref PubMed Scopus (37) Google Scholar) healthy infants expressing vector sequences up to 10 months post-gene transfer, (2Cheung M.-C. Goldberg J.D. Kan Y.W. Prenatal diagnosis of sickle cell anaemia and thalassaemia by analysis of fetal cells in maternal blood.Nat. Genet. 1996; 14: 264-268Crossref PubMed Scopus (243) Google Scholar) fetal primate administration of retroviral vectors results in gene transfer to multiple organ systems, (3Desnick R.J. First-trimester biochemical and molecular diagnoses using chorionic villi: High accuracy in the U.S. collaborative study.Prenat. Diagn. 1992; 12: 357-372Crossref PubMed Scopus (16) Google Scholar) the highest level of gene transfer to hematopoietic progenitors was observed with the lentiviral vector system, and (4Evans M.I. Drugan A. Koppitch F.C. Zador I.E. Sachs A.J. Sokol R.J. Genetic diagnosis in the first trimester: The norm for the 1990s.Am. J. Obstet. Gynecol. 1989; 160: 1332-1339Abstract Full Text PDF PubMed Scopus (51) Google Scholar) there was no evidence of transplacental transfer of vector sequences into the dams. The rhesus monkey is an important preclinical primate model system for exploring gene transfer approaches for future applications in humans." @default.
- W2049856108 created "2016-06-24" @default.
- W2049856108 creator A5027835055 @default.
- W2049856108 creator A5036869902 @default.
- W2049856108 creator A5041969169 @default.
- W2049856108 creator A5046936580 @default.
- W2049856108 creator A5047599129 @default.
- W2049856108 creator A5050109992 @default.
- W2049856108 creator A5072134632 @default.
- W2049856108 creator A5077685743 @default.
- W2049856108 creator A5077959007 @default.
- W2049856108 date "2001-02-01" @default.
- W2049856108 modified "2023-10-10" @default.
- W2049856108 title "Rhesus Monkey Model for Fetal Gene Transfer: Studies with Retroviral- Based Vector Systems" @default.
- W2049856108 cites W1490724066 @default.
- W2049856108 cites W1566969252 @default.
- W2049856108 cites W1732481302 @default.
- W2049856108 cites W1965956881 @default.
- W2049856108 cites W1978064078 @default.
- W2049856108 cites W1978403064 @default.
- W2049856108 cites W1980575333 @default.
- W2049856108 cites W1983929384 @default.
- W2049856108 cites W1987388259 @default.
- W2049856108 cites W1990888448 @default.
- W2049856108 cites W1993622052 @default.
- W2049856108 cites W1997076676 @default.
- W2049856108 cites W2001150636 @default.
- W2049856108 cites W2006351633 @default.
- W2049856108 cites W2006519535 @default.
- W2049856108 cites W2007903872 @default.
- W2049856108 cites W2009761723 @default.
- W2049856108 cites W2010235139 @default.
- W2049856108 cites W2010501601 @default.
- W2049856108 cites W2016504026 @default.
- W2049856108 cites W2020843239 @default.
- W2049856108 cites W2028660295 @default.
- W2049856108 cites W2029519355 @default.
- W2049856108 cites W2035293897 @default.
- W2049856108 cites W2038069104 @default.
- W2049856108 cites W2040892387 @default.
- W2049856108 cites W2044246857 @default.
- W2049856108 cites W2049325112 @default.
- W2049856108 cites W2052150955 @default.
- W2049856108 cites W2054861758 @default.
- W2049856108 cites W2056671706 @default.
- W2049856108 cites W2067202883 @default.
- W2049856108 cites W2070292261 @default.
- W2049856108 cites W2070436641 @default.
- W2049856108 cites W2074944925 @default.
- W2049856108 cites W2075765271 @default.
- W2049856108 cites W2086310433 @default.
- W2049856108 cites W2087023882 @default.
- W2049856108 cites W2091987058 @default.
- W2049856108 cites W2096810988 @default.
- W2049856108 cites W2108491944 @default.
- W2049856108 cites W2114538338 @default.
- W2049856108 cites W2130814516 @default.
- W2049856108 cites W2133150928 @default.
- W2049856108 cites W2147153603 @default.
- W2049856108 cites W2163229914 @default.
- W2049856108 cites W2318217341 @default.
- W2049856108 cites W2320256363 @default.
- W2049856108 cites W2326156625 @default.
- W2049856108 cites W2416575670 @default.
- W2049856108 cites W2419641684 @default.
- W2049856108 cites W2437437756 @default.
- W2049856108 cites W4239833439 @default.
- W2049856108 doi "https://doi.org/10.1006/mthe.2000.0255" @default.
- W2049856108 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/11237669" @default.
- W2049856108 hasPublicationYear "2001" @default.
- W2049856108 type Work @default.
- W2049856108 sameAs 2049856108 @default.
- W2049856108 citedByCount "63" @default.
- W2049856108 countsByYear W20498561082012 @default.
- W2049856108 countsByYear W20498561082013 @default.
- W2049856108 countsByYear W20498561082014 @default.
- W2049856108 countsByYear W20498561082016 @default.
- W2049856108 countsByYear W20498561082019 @default.
- W2049856108 countsByYear W20498561082020 @default.
- W2049856108 countsByYear W20498561082021 @default.
- W2049856108 countsByYear W20498561082023 @default.
- W2049856108 crossrefType "journal-article" @default.
- W2049856108 hasAuthorship W2049856108A5027835055 @default.
- W2049856108 hasAuthorship W2049856108A5036869902 @default.
- W2049856108 hasAuthorship W2049856108A5041969169 @default.
- W2049856108 hasAuthorship W2049856108A5046936580 @default.
- W2049856108 hasAuthorship W2049856108A5047599129 @default.
- W2049856108 hasAuthorship W2049856108A5050109992 @default.
- W2049856108 hasAuthorship W2049856108A5072134632 @default.
- W2049856108 hasAuthorship W2049856108A5077685743 @default.
- W2049856108 hasAuthorship W2049856108A5077959007 @default.
- W2049856108 hasBestOaLocation W20498561081 @default.
- W2049856108 hasConcept C104317684 @default.
- W2049856108 hasConcept C111599444 @default.
- W2049856108 hasConcept C137061746 @default.
- W2049856108 hasConcept C142613039 @default.
- W2049856108 hasConcept C150194340 @default.
- W2049856108 hasConcept C153911025 @default.