Matches in SemOpenAlex for { <https://semopenalex.org/work/W2049868698> ?p ?o ?g. }
- W2049868698 endingPage "14907" @default.
- W2049868698 startingPage "14887" @default.
- W2049868698 abstract "The analysis of microwave observations over land to determine atmospheric and surface parameters is still limited due to the complexity of the inverse problem. Neural network techniques have already proved successful as the basis of efficient retrieval methods for nonlinear cases; however, first guess estimates, which are used in variational assimilation methods to avoid problems of solution nonuniqueness or other forms of solution irregularity, have up to now not been used with neural network methods. In this study, a neural network approach is developed that uses a first guess. Conceptual bridges are established between the neural network and variational assimilation methods. The new neural method retrieves the surface skin temperature, the integrated water vapor content, the cloud liquid water path and the microwave surface emissivities between 19 and 85 GHz over land from Special Sensor Microwave Imager observations. The retrieval, in parallel, of all these quantities improves the results for consistancy reasons. A database to train the neural network is calculated with a radiative transfer model and a global collection of coincident surface and atmospheric parameters extracted from the National Center for Environmental Prediction reanalysis, from the International Satellite Cloud Climatology Project data, and from microwave emissivity atlases previously calculated. The results of the neural network inversion are very encouraging. The theoretical RMS error of the surface temperature retrieval over the globe is 1.3 K in clear-sky conditions and 1.6 K in cloudy scenes. Water vapor is retrieved with a theoretical RMS error of 3.8 kg m−2 in clear conditions and 4.9 kg m−2 in cloudy situations. The theoretical RMS error in cloud liquid water path is 0.08 kg m−2. The surface emissivities are retrieved with an accuracy of better than 0.008 in clear conditions and 0.010 in cloudy conditions. Microwave land surface temperature retrieval presents a very attractive complement to the infrared estimates in cloudy areas: time record of land surface temperature will be produced." @default.
- W2049868698 created "2016-06-24" @default.
- W2049868698 creator A5037279767 @default.
- W2049868698 creator A5053651233 @default.
- W2049868698 creator A5055929239 @default.
- W2049868698 creator A5079433095 @default.
- W2049868698 date "2001-07-01" @default.
- W2049868698 modified "2023-10-10" @default.
- W2049868698 title "A new neural network approach including first guess for retrieval of atmospheric water vapor, cloud liquid water path, surface temperature, and emissivities over land from satellite microwave observations" @default.
- W2049868698 cites W1865282656 @default.
- W2049868698 cites W1987428707 @default.
- W2049868698 cites W1995605892 @default.
- W2049868698 cites W2001607913 @default.
- W2049868698 cites W2008587644 @default.
- W2049868698 cites W2016366586 @default.
- W2049868698 cites W2040021906 @default.
- W2049868698 cites W2045470555 @default.
- W2049868698 cites W2058282736 @default.
- W2049868698 cites W2058654371 @default.
- W2049868698 cites W2075005504 @default.
- W2049868698 cites W2076227027 @default.
- W2049868698 cites W2077591616 @default.
- W2049868698 cites W2080278412 @default.
- W2049868698 cites W2080679551 @default.
- W2049868698 cites W2082684467 @default.
- W2049868698 cites W2103496339 @default.
- W2049868698 cites W2107389842 @default.
- W2049868698 cites W2114235122 @default.
- W2049868698 cites W2120949479 @default.
- W2049868698 cites W2123946811 @default.
- W2049868698 cites W2131110520 @default.
- W2049868698 cites W2131836035 @default.
- W2049868698 cites W2133336431 @default.
- W2049868698 cites W2134928158 @default.
- W2049868698 cites W2137983211 @default.
- W2049868698 cites W2148663775 @default.
- W2049868698 cites W2160900363 @default.
- W2049868698 cites W2166103570 @default.
- W2049868698 cites W2171908764 @default.
- W2049868698 cites W2173251738 @default.
- W2049868698 cites W2175344879 @default.
- W2049868698 cites W2179356992 @default.
- W2049868698 cites W2513572844 @default.
- W2049868698 cites W3047539799 @default.
- W2049868698 cites W4238621353 @default.
- W2049868698 cites W2056095770 @default.
- W2049868698 doi "https://doi.org/10.1029/2001jd900085" @default.
- W2049868698 hasPublicationYear "2001" @default.
- W2049868698 type Work @default.
- W2049868698 sameAs 2049868698 @default.
- W2049868698 citedByCount "217" @default.
- W2049868698 countsByYear W20498686982012 @default.
- W2049868698 countsByYear W20498686982013 @default.
- W2049868698 countsByYear W20498686982014 @default.
- W2049868698 countsByYear W20498686982015 @default.
- W2049868698 countsByYear W20498686982016 @default.
- W2049868698 countsByYear W20498686982017 @default.
- W2049868698 countsByYear W20498686982018 @default.
- W2049868698 countsByYear W20498686982019 @default.
- W2049868698 countsByYear W20498686982020 @default.
- W2049868698 countsByYear W20498686982021 @default.
- W2049868698 countsByYear W20498686982022 @default.
- W2049868698 countsByYear W20498686982023 @default.
- W2049868698 crossrefType "journal-article" @default.
- W2049868698 hasAuthorship W2049868698A5037279767 @default.
- W2049868698 hasAuthorship W2049868698A5053651233 @default.
- W2049868698 hasAuthorship W2049868698A5055929239 @default.
- W2049868698 hasAuthorship W2049868698A5079433095 @default.
- W2049868698 hasBestOaLocation W20498686981 @default.
- W2049868698 hasConcept C120665830 @default.
- W2049868698 hasConcept C121332964 @default.
- W2049868698 hasConcept C127313418 @default.
- W2049868698 hasConcept C1276947 @default.
- W2049868698 hasConcept C134306372 @default.
- W2049868698 hasConcept C135252773 @default.
- W2049868698 hasConcept C147534773 @default.
- W2049868698 hasConcept C153294291 @default.
- W2049868698 hasConcept C154945302 @default.
- W2049868698 hasConcept C163651212 @default.
- W2049868698 hasConcept C19269812 @default.
- W2049868698 hasConcept C24552861 @default.
- W2049868698 hasConcept C33923547 @default.
- W2049868698 hasConcept C39432304 @default.
- W2049868698 hasConcept C41008148 @default.
- W2049868698 hasConcept C44838205 @default.
- W2049868698 hasConcept C50644808 @default.
- W2049868698 hasConcept C62649853 @default.
- W2049868698 hasConcept C74902906 @default.
- W2049868698 hasConcept C76155785 @default.
- W2049868698 hasConceptScore W2049868698C120665830 @default.
- W2049868698 hasConceptScore W2049868698C121332964 @default.
- W2049868698 hasConceptScore W2049868698C127313418 @default.
- W2049868698 hasConceptScore W2049868698C1276947 @default.
- W2049868698 hasConceptScore W2049868698C134306372 @default.
- W2049868698 hasConceptScore W2049868698C135252773 @default.
- W2049868698 hasConceptScore W2049868698C147534773 @default.
- W2049868698 hasConceptScore W2049868698C153294291 @default.
- W2049868698 hasConceptScore W2049868698C154945302 @default.