Matches in SemOpenAlex for { <https://semopenalex.org/work/W2049869062> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W2049869062 endingPage "24" @default.
- W2049869062 startingPage "1" @default.
- W2049869062 abstract "Next article The Arithmetic of Probability DistributionsI. V. OstrovskiiI. V. Ostrovskiihttps://doi.org/10.1137/1131001PDFBibTexSections ToolsAdd to favoritesExport CitationTrack CitationsEmail SectionsAbout[1] Yu. V. Linnik and , I. V. Ostrovskii, Decomposition of random variables and vectors, American Mathematical Society, Providence, R. I., 1977ix+380 55:1404 0358.60020 Google Scholar[2] E. Lukacs, Characteristic Functions, Hafner, London, 1972 Google Scholar[3] L. Z. Livshits, , I. V. Ostrovskii and , G. P. Chistyakov, The arithmetic of probability laws, Probability theory, Mathematical statistics, Theoretical cybernetics, Vol. 12 (Russian), Akad. Nauk SSSR Vsesojuz. Inst. Naučn. i Tehn. Informacii, Moscow, 1975, 5–42, Progress in Science and Engineering Ser. 52:1826 Google Scholar[4] G. P. Chistyakov, The stability of decompositions of probability distributions, Theory Probab. Appl., to appear Google Scholar[5] Lennart Bondesson, Classes of infinitely divisible distributions and densities, Z. Wahrsch. Verw. Gebiete, 57 (1981), 39–71 83e:60012a 0464.60016 CrossrefGoogle Scholar[6] A. I. Il'inskii, On indecomposable components of some infinitely divisible lawsTheory of Functions, Funcational Analysis and Their Applications, Vol. 27, Izd-vo Khar'kov. Gos. Inst., Khar'kov, 1977, 61–71, (In Russian.) Google Scholar[7] L. S. Kudina, Indecomposable radially-symmetric distributionsTheory of Functions, Functional Analysis and Their Applications, Vol. 28, Izd-vo Khar'kov Gos. Inst., Khar'kov, 1977, 35–45, (In Russian.) Google Scholar[8] D. N. Shanbhag, Some results on the decomposability of the distribution of quadratic expressions, Math. Proc. Cambridge Philos. Soc., 77 (1975), 553–558 53:11697 0314.60013 CrossrefGoogle Scholar[9] V. G. Ushakov and , N. G. Ushakov, On indecomposable laws with infinitely divisible projections, Theory Probab. Appl., 29 (1984), 596–598 10.1137/1129080 0601.60014 LinkGoogle Scholar[10] Bai Zhidong and , Su Chin, The solution of a problem posed by Linnik and Ostrovski˘, Sci. Sinica Ser. A, 25 (1982), 680–692 84h:60032 0501.60023 Google Scholar[11] A. E. Fryntov, On the factorization of infinitely divisible distributions, Theory Probab. Appl., 20 (1975), 648–652 10.1137/1120073 0351.60026 LinkGoogle Scholar[12] A. E. Fryntov and , G. P. Chistyakov, On infinitely divisible laws of the class $I_{0}$Theory of Functions, Functional Analysis and Their Applications, Vol. 32, Izd-vo Khar'kov Gos. Inst., Khar'kov, 1979, 91–97, (In Russian.) Google Scholar[13] G. P. Chistyakov, On the factorization of distributions in the class $mathcal{L}$, Third International Vilnius Conference on Probability Theory and Mathematical Statistics. Summary of Reports, Vol. 2, Inst. Mat. i Kib. Akad. Nauk. Lit. SSR., Vilnius, 1981, 244–245, (In Russian.) Google Scholar[14] G. P. Chistyakov, The application of stability estimates for decompositions of infinitely divisible distributions towards describing the class $I_{0}$, Fourth International Vilnius Conference on Probability Theory and Mathematical Statistics, Vol. 3, Inst. Mat. i Kib. Akad. Nauk. Lit. SSR, Vilnius, 1985, 296–297, (In Russian.) Google Scholar[15] A. E. Fryntov and , G. P. Chistyakov, On the membership of lattice probability distributions in the class $I_{0}$, Math. USSR-Izv., 11 (1977), 441–452 0379.60022 CrossrefGoogle Scholar[16] A. E. Fryntov, On the factorization of compositions of a countable number of Poisson laws, Math. USSR-Sb., 28 (1976), 153–167 0373.60018 CrossrefGoogle Scholar[17] Shigeru Mass, Decomposition of infinitely divisible characteristic functions with absolutely continuous Poisson spectral measure, Ann. Inst. Statist. Math., 27 (1975), 289–298 52:15604 0353.60028 CrossrefGoogle Scholar[18] Shigeru Mass, Decomposition of multivariate infinitely divisible characteristic functions with absolutely continuous Poisson spectral measures, J. Multivariate Anal., 5 (1975), 415–424 10.1016/0047-259X(75)90025-1 52:12041 0368.60017 CrossrefGoogle Scholar[19] L. Z. Livshits, Conditions for the absence of indecomposable components in infinitely divisible probability distributions with an absolutely continuous Lévy spectral measure, Siberian Math. J., 19 (1978), 439–448 0409.60024 CrossrefGoogle Scholar[20] L. S. Kudina, On components of radially symmetric distributionsTheory of Functions, Functional Analysis and Their Applications, Izd-vo Khar'kov Gos. Inst., Khar'kov, 1976, 37–44, (In Russian.) Google Scholar[21] L. S. Kudina, Decompositions of probability distributions decreasing fast at infinity, Siberian Math. J., 19 (1978), 235–239 CrossrefGoogle Scholar[22] L. S. Kudina, On decompositions of multivariate probability distributions, Problems on Stability of Stochastic Models, Trudy Seminara, VNIISI, Moscow, 1980, 72–75, (In Russian.) 0468.60020 Google Scholar[23] I. V. Ostrovskii, On divisors of infinitely divisible distributions representable as Cartesian products, Theory Probab. Appl., 27 (1982), 832–837 10.1137/1127091 0522.60013 LinkGoogle Scholar[24] G. P. Chistyakov, $alpha$-expansions of characteristic functions which are limiting values of analytic functions, Mat. Sb. (N.S.), 107(149) (1978), 275–288, 318, (In Russian.) 80e:60026 Google Scholar[25] A. E. Fryntov, The $alpha$-components of infinitely divisible laws, Mathematical physics and functional analysis, No. V (Russian), Akad. Nauk Ukrain. SSR Fiz.-Tehn. Inst. Nizkih Temperatur, Kharkov, 1974, 51–63, 157 54:8794 Google Scholar[26] G. P. Chistyakov, Decomposition of the normal law into a composition of functions of bounded variation, Mat. Zametki, 19 (1976), 133–147, (In Russian.) 53:11695 0333.60014 Google Scholar[27] N. I. Yakovleva, Decomposition of some infinitely divisible distribution functions into a composition of functions of bounded variation, Ukrainian Math. J., 30 (1978), 212–217 0424.60017 CrossrefGoogle Scholar[28] G. L. Grunkemeier, Decomposition of functions of bounded variation, Ann. Probability, 3 (1975), 329–337 51:9146 0325.60017 CrossrefGoogle Scholar[29] G. M. Fel'dman, On the decomposition of a Gaussian distribution on groups, Theory Probab. Appl., 22 (1977), 133–140 10.1137/1122012 0378.60006 LinkGoogle Scholar[30] G. M. Fel'dman, Bernstein and Polya's characterization of the Gaussian distribution on groups, Fourth International Vilnius Conference on Probability Theory and Mathematical Statistics, Vol. 3, Inst. Mat. i Kib. Akad. Nauk. Lit SSR, Vilnius, 1985, 240–242, (In Russian.) Google Scholar[31] G. M. Fel'dman, On Gaussian distributions on locally compact Abelian groups, Theory Probab. Appl., 23 (1978), 529–542 10.1137/1123062 0421.60009 LinkGoogle Scholar[32] G. M. Fel'dman, On a generalized Poisson distribution on groups, Zap. Nauchn. Sem. Leningrad Otdel. Mat. Inst. Steklov, 72 (1977), 161–185, (In Russian.) 0411.60015 Google Scholar[33] G. M. Fel'dman, Generalized Poisson distribution of class $I_{0}$ on groups, Theory Probab. Appl., 29 (1984), 218–230 10.1137/1129034 0562.60009 LinkGoogle Scholar[34] G. M. Fel'dman and , A. E. Fryntov, On decomposition of a convolution of two Poisson distributions on locally compact Abelian groups, Theory Probab. Appl., 26 (1981), 601–607 10.1137/1126067 0488.60016 LinkGoogle Scholar[35] G. M. Fel'dman and , A. E. Fryntov, On the decomposition of the convolution of a Gaussian and Poisson distribution on locally compact abelian groups, J. Multivariate Anal., 13 (1983), 148–166 10.1016/0047-259X(83)90010-6 85b:60006 0518.60012 CrossrefGoogle Scholar[36] G. M. Fel'dman, On infinitely divisible distributions of class $I_{0}$ on groups, Theory Probab. Appl., 30 (1985), 475–487 10.1137/1130060 0594.60010 LinkGoogle Scholar[37] V. G. Ushakov and , N. G. Ushakov, Indecomposable probability distributions on groups, Theory Probab. Appl., 29 (1984), 356–359 10.1137/1129044 0557.60010 LinkGoogle Scholar[38] A. M. Ulanovskii, Description of the class $I_{0}$ in the semigroup of standard Kingman p-functions, Theory Probab. Appl., 28 (1983), 561–572 10.1137/1128051 LinkGoogle Scholar[39] I. P. Trukhina, A problem connected with the arithmetic of probability measures on spheres, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 87 (1979), 143–158, 209–210, 214–215, (In Russian.) 81b:60011 0427.60011 Google Scholar[40] I. P. Trukhina, The arithmetic of spherically symmetric measures in Lobachevskian spaceTheory of Functions. Functional Analysis and Their Applications, Vol. 34, Izd-vo Khar'kov Gos. Inst., Khar'kov, 1980, 136–146, (In Russian.) Google Scholar[41] I. V. Ostrovskii and , I. P. Trukhina, On the arithmetic of Shanbhag-Kennedy semigroupsQuestions on Mathematical Physics and Functional Analysis, Naukova Dumka, Kiev, 1976, 11–19, (In Russian.) Google Scholar[42] I. P. Trukhina, Semigroups of functions that are representable by series of Jacobi polynomials, Dokl. Akad. Nauk Ukrain. SSR Ser. A, (1977), 21–24, 95, (In Russian.) 57:10768 Google Scholar[43] A. I. Il'inskii, The arithmetic of the generalized characteristic functions of B. M. Levitan, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 61 (1976), 56–58, 136, (In Russian.) 55:6519 0363.60018 Google Scholar[44] A. I. Il'inskii, The arithmetic of Pólya characteristic functions, Mat. Zametki, 21 (1977), 717–725, (In Russian.) 56:9628 Google Scholar[45] A. M. Ulanovskii, $Gamma$-sequences and their arithmetic, Problems of stability of stochastic models (Panevezhis, 1980), Vsesoyuz. Nauch.-Issled. Inst. Sistem. Issled., Moscow, 1981, 129–138, Trudy Semin., (In Russian.) 83m:22006 0578.22005 Google Scholar[46] A. I. Il'inskii, On the zeros and argument of a characteristic function, Theory Probab. Appl., 20 (1975), 410–415 10.1137/1120048 0348.60013 LinkGoogle Scholar[47] I. P. Kamynin and , I. V. Ostrovskii, Set of zeros of Hermitian-positive entire functions, Siberian Math. J., 23 (1982), 334–357 Google Scholar[48] I. V. Ostrovskii, Sets of zeros of periodic Hermitian-positive entire functionsTheory of Functions, Functional Analysis and Their Applications, Vol. 37, Izd-vo Khar'kov Gos. Inst., Khar'kov, 1982, 102–110, (In Russian.) Google Scholar[49] B. N. Ginzburg and , N. D. Serykh, On algebraic surfaces of zeros of entire characteristic functions of multivariate probability distributionsTheory of Functions, Functional Analysis and Their Applications, Vol. 30, Izd-vo Khar'kov Gos. Inst., Khar'kov, 1978, 30–36, (In Russian.) Google Scholar[50] A. I. Il'inskii, On ridge functions with the same zerosTheory of Functions, Functional Analysis and Their Applications, Vol. 36, Izd-vo Khar'kov Gos. Inst., Khar'kov, 1981, 27–29, (In Russian.) Google Scholar[51] A. A. Gol'dberg and , I. V. Ostrovskii, Indicators of Hermitian-positive entire functions of finite order, Siberian. Math. J., 23 (1982), 804–820 0515.30015 CrossrefGoogle Scholar[52] I. P. Kamynin and , I. V. Ostrovskii, On zeros of entire ridge functionsTheory of Functions, Functional Analysis, and Their Applications, Vol. 24, Izd-vo Khar'kov Gas. Inst., Khar'kov, 1975, 41–50, (In Russian.) Google Scholar[53] A. E. Eremenko, Valiron defects of entire characteristic functions of finite order, Ukrainian Math. J., 29 (1977), 600–601 0421.30026 CrossrefGoogle Scholar[54] A. A. Gol'dberg and , I. V. Ostrovskii, The growth of entire ridge functions with real zeros, Mathematical physics and functional analysis, No. V (Russian), Akad. Nauk Ukrain. SSR Fiz.-Tehn. Inst. Nizkih Temperatur, Kharkov, 1974, 3–10, 156 53:13561 Google Scholar[55] I. P. Kamynin, A generalization of Marcinkiewicz's theorem on entire characteristic functions of probability distributions, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 85 (1979), 94–103, 239, 245, (In Russian.) 81b:30061 0417.60021 Google Scholar[56] I. V. Ostrovskii, On the growth of entire and analytic (in a halfplane) ridge functions, Mat. Sb. (N.S.), 119(161) (1982), 150–159, (In Russian.) Google Scholar[57] I. V. Ostrovskii, On the growth of entire characteristic functionsStability problems for stochastic models (Moscow, 1982), Lecture Notes in Math., Vol. 982, Springer, Berlin, 1983, 151–155 85d:60035 0503.60027 CrossrefGoogle Scholar[58] B. N. Ginzburg, On the growth of entire characteristic functions of multivariate probability lawsTheory of Functions, Functional Analysis and Their Applications, Vol. 20, Izd-vo Khar'kov Gos. Inst., Khar'kov, 1974, 38–49, (In Russian.) Google Scholar[59] G. Schopf, Conjugate types of entire characteristic functions of several variables, Ukrainian Math. J., 29 (1970), 371–379 CrossrefGoogle Scholar[60] G. Schopf, Conjugate orders and conjugate types of the decrease of a multidimensional probability law, Ukrain. Mat. Zh., 30 (1978), 701–707, 719 80g:60016b Google Scholar[61] M. N. Sheremeta, On entire characteristic functions belonging to a convergence class, Dokl. Akad. Nauk. Ukrain. SSR Ser. A, 8 (1975), 697–699, (In Russian.) Google Scholar[62] N. I. Yakoleva, The growth of entire characteristic functions of probability lawsQuestions on mathematical physics and functional analysis (Proc. Res. Sem. Inst. Low Temp. Phys. Engrg., Kharkov) (Russian), “Naukova Dumka”, Kiev, 1976, 43–54, 172 58:24464 Google Scholar[63] B. V. Vinnitskii, On a property of entire characteristic functions of probability laws, Vyssh, Uchebn. Zaved. Mat., 4 (1975), 95–97, (In Russian.) Google Scholar[64] M. Dewess and , M. Riedel, The connection between the proximate order of an entire characteristic function and the corresponding distribution function, Czechoslovak Math. J., 27(102) (1977), 173–185 55:13527 0401.60013 Google Scholar[65] Monika Dewess, The tail behaviour of a distribution function and its connection to the growth of its entire characteristic function, Math. Nachr., 81 (1978), 217–231 57:10761 0326.60013 CrossrefGoogle Scholar[66] V. M. Sorokivskii, Growth of analytic characteristic functions of probability laws, Izv. Vyssh. Uchebn. Zaved. Mat., (1979), 48–52, (In Russian.) 81h:60023 Google Scholar[67] V. M. Sorokivskii, On the growth of characteristic functions of probability laws, 1980, Manuscript dep. in VINITI, No. 5330-80 Google Scholar[68] A. A. Gol'dberg and , M. N. Sheremeta, On the ridge property of a composition of an entire function and an exponential polynomial, Dokl. Akad. Nauk. Armen. SSR, 69 (1979), 129–134, (In Russian.) Google Scholar[69] M. N. Sheremeta, Entire ridge functions, Izv. Vyssh. Uchebn. Zaved. Mat., (1981), 56–63, (In Russian.) 83g:30029 0468.30018 Google Scholar[70] I. V. Ostrovskii, Infinitely divisible factorizationTheory of Functions, Functional Analysis and Their Applications, Vol. 34, Izd-vo. Khar'kov Gos. Inst., Khar'kov, 1980, 89–96, (In Russian.) Google Scholar[71] A. M. Ulanovskii, On infinitely divisible factorizationTheory of Functions, Functional Analysis and Their Applications, Vol. 38, Izd-vo. Khar'kov Gos. Inst., Khar'kov, 1982, 111–121, (In Russian.) Google Scholar Next article FiguresRelatedReferencesCited byDetails Moment properties of multivariate infinitely divisible laws and criteria for multivariate self-decomposabilityJournal of Multivariate Analysis, Vol. 101, No. 3 Cross Ref Strong Decomposition of Random Variables14 April 2007 | Journal of Theoretical Probability, Vol. 20, No. 2 Cross Ref The arithmetic of a semigroup of series of Walsh functions9 April 2009 | Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics, Vol. 68, No. 3 Cross Ref I Cross Ref Marcinkiewicz and Lukacs Theorems on Abelian GroupsG. M. Fel’dman17 July 2006 | Theory of Probability & Its Applications, Vol. 34, No. 2AbstractPDF (912 KB)L Cross Ref THE DAVIDSON-KENDALL PROBLEM AND RELATED RESULTS ON THE STRUCTURE OF THE WISHART DISTRIBUTION26 February 2008 | Australian Journal of Statistics, Vol. 30A, No. 1 Cross Ref Decompositional Stability of Distribution LawsG. P. Chistyakov28 July 2006 | Theory of Probability & Its Applications, Vol. 31, No. 3AbstractPDF (1807 KB) Volume 31, Issue 1| 1987Theory of Probability & Its Applications History Submitted:16 November 1985Published online:01 August 2006 InformationCopyright © 1987 © Society for Industrial and Applied MathematicsPDF Download Article & Publication DataArticle DOI:10.1137/1131001Article page range:pp. 1-24ISSN (print):0040-585XISSN (online):1095-7219Publisher:Society for Industrial and Applied Mathematics" @default.
- W2049869062 created "2016-06-24" @default.
- W2049869062 creator A5066004554 @default.
- W2049869062 date "1987-03-01" @default.
- W2049869062 modified "2023-09-27" @default.
- W2049869062 title "The Arithmetic of Probability Distributions" @default.
- W2049869062 cites W1974209409 @default.
- W2049869062 cites W1974597262 @default.
- W2049869062 cites W1975557865 @default.
- W2049869062 cites W1979581337 @default.
- W2049869062 cites W1982409437 @default.
- W2049869062 cites W1983882567 @default.
- W2049869062 cites W2001533711 @default.
- W2049869062 cites W2010876705 @default.
- W2049869062 cites W2010924074 @default.
- W2049869062 cites W2021210463 @default.
- W2049869062 cites W2027345238 @default.
- W2049869062 cites W2027694068 @default.
- W2049869062 cites W2034131997 @default.
- W2049869062 cites W2045081085 @default.
- W2049869062 cites W2046955042 @default.
- W2049869062 cites W2055068006 @default.
- W2049869062 cites W2056577982 @default.
- W2049869062 cites W2057287380 @default.
- W2049869062 cites W2062628539 @default.
- W2049869062 cites W2064259760 @default.
- W2049869062 cites W2066483494 @default.
- W2049869062 cites W2067796445 @default.
- W2049869062 cites W207766131 @default.
- W2049869062 cites W2083982085 @default.
- W2049869062 cites W2088548729 @default.
- W2049869062 cites W2091172494 @default.
- W2049869062 cites W2152040932 @default.
- W2049869062 cites W3048005954 @default.
- W2049869062 doi "https://doi.org/10.1137/1131001" @default.
- W2049869062 hasPublicationYear "1987" @default.
- W2049869062 type Work @default.
- W2049869062 sameAs 2049869062 @default.
- W2049869062 citedByCount "10" @default.
- W2049869062 crossrefType "journal-article" @default.
- W2049869062 hasAuthorship W2049869062A5066004554 @default.
- W2049869062 hasConcept C105795698 @default.
- W2049869062 hasConcept C149441793 @default.
- W2049869062 hasConcept C33923547 @default.
- W2049869062 hasConcept C94375191 @default.
- W2049869062 hasConceptScore W2049869062C105795698 @default.
- W2049869062 hasConceptScore W2049869062C149441793 @default.
- W2049869062 hasConceptScore W2049869062C33923547 @default.
- W2049869062 hasConceptScore W2049869062C94375191 @default.
- W2049869062 hasIssue "1" @default.
- W2049869062 hasLocation W20498690621 @default.
- W2049869062 hasOpenAccess W2049869062 @default.
- W2049869062 hasPrimaryLocation W20498690621 @default.
- W2049869062 hasRelatedWork W1525896997 @default.
- W2049869062 hasRelatedWork W2012322798 @default.
- W2049869062 hasRelatedWork W2047454787 @default.
- W2049869062 hasRelatedWork W2058171746 @default.
- W2049869062 hasRelatedWork W2119158312 @default.
- W2049869062 hasRelatedWork W2324899973 @default.
- W2049869062 hasRelatedWork W2345600497 @default.
- W2049869062 hasRelatedWork W241866648 @default.
- W2049869062 hasRelatedWork W2552050053 @default.
- W2049869062 hasRelatedWork W3118343816 @default.
- W2049869062 hasVolume "31" @default.
- W2049869062 isParatext "false" @default.
- W2049869062 isRetracted "false" @default.
- W2049869062 magId "2049869062" @default.
- W2049869062 workType "article" @default.