Matches in SemOpenAlex for { <https://semopenalex.org/work/W2049966453> ?p ?o ?g. }
- W2049966453 endingPage "278" @default.
- W2049966453 startingPage "249" @default.
- W2049966453 abstract "A theoretical model of the solubility of the assemblage bertrandite/phenakite + topaz + quartz during formation of epithermal Be-ores related to topaz rhyolites (e.g., Spor Mountain, Utah) has been developed. Available experimentally derived thermodynamic data were combined with thermodynamic data predicted, using the isocoulombic technique to calculate the speciation and solubility of Be from 25° to 300°C at saturated water-vapor pressure. Complexes of Be2+ with hydroxide, fluoride, chloride and carbonate, as well as mixed ligand complexes, were considered. Chloride complexation, although not well constrained by experimental data, appears to be very weak; the species BeCl+ gives rise to predicted solubilities of bertrandite/phenakite greater than 1 ppm only at temperatures >200°C and pH<2 at 1 molal total chloride. Other chloride species may exist, but there is presently no definite experimental evidence for them. A series of polymeric hydroxide complexes are known at 25°C, but calculations based on thermodynamic data from the literature show that monomeric hydroxide complexes (BeOH+, Be(OH)2(aq) and Be(OH)3−) predominate at elevated temperatures and the relatively low total Be concentrations attained in nature. Solubilities of bertrandite/phenakite + quartz due to Behydroxide complexes are predicted to be less than 1 ppm over the entire range of geologically resonable pH (2–12). Carbonate complexes (BeCO3(aq), Be(CO3)22−) also contribute negligibly to the solubility of these minerals over the geologically reasonable pH range at 25°–300°C and free carbonate concentrations ⩽0.1 molal. Fluoride complexes (BeF+, BeF2(aq), BeF3− and BeF42−) can increase the solubility of bertrandite/phenakite + quartz to values exceeding 1 ppm at 2<pH<5 and free fluoride activities greater than 0.01 molal at 100°C. Mixed fluoride-hydroxide complexes (BeOHF(aq), Be(OH)2F−) have very restricted fields of predominance and hence are relatively unimportant. Mixed fluoride-carbonate complexes (BeCO3F−), on the other hand, contribute to substantially increased solubilities at higher temperatures (⩾200°C) and pH 5–7, when both total fluoride and total carbonate exceed 0.01 molal. Additional calculations suggest that free fluoride activities greater than 0.01 molal can be attained at temperatures greater than 100°C and at pH=6 in fluids in equilibrium with topaz + K-feldspar + quartz at ΣK=1.0 molal. However, at lower pH, where kaolinite/pyrophyllite or muscovite replace K-feldspar, the free fluoride activities are buffered to very low values. Also, in the presence of fluorite, free fluoride activities are probably also buffered to values less than those required for Be transport as fluoride complexes. It is thus likely that Be, at Spor Mountain and other epithermal Be deposits, was removed in the form of fluoride complexes by a hydrothermal fluid from a devitrifying topaz rhyolite at temperatures between 100° and 200°C and at a nearneutral pH. The fluid transported Be until its free fluoride activity was reduced by the formation of fluorite upon encountering carbonate lithologies. Beryllium transport as fluoride complexes may also help explain the formation of Be-skarn deposits and the alteration of beryl in pegmatites to minerals such as bertrandite and phenakite." @default.
- W2049966453 created "2016-06-24" @default.
- W2049966453 creator A5080468767 @default.
- W2049966453 date "1992-10-01" @default.
- W2049966453 modified "2023-10-17" @default.
- W2049966453 title "Theoretical prediction of speciation and solubility of beryllium in hydrothermal solution to 300°C at saturated vapor pressure: Application to bertrandite/phenakite deposits" @default.
- W2049966453 cites W1491919717 @default.
- W2049966453 cites W1586931791 @default.
- W2049966453 cites W1968510861 @default.
- W2049966453 cites W1968701120 @default.
- W2049966453 cites W1969465559 @default.
- W2049966453 cites W1969829225 @default.
- W2049966453 cites W1973525723 @default.
- W2049966453 cites W1976227517 @default.
- W2049966453 cites W1979592112 @default.
- W2049966453 cites W1981909164 @default.
- W2049966453 cites W1987522551 @default.
- W2049966453 cites W1987954591 @default.
- W2049966453 cites W1988413840 @default.
- W2049966453 cites W1989492973 @default.
- W2049966453 cites W1992251224 @default.
- W2049966453 cites W1996923308 @default.
- W2049966453 cites W1998976283 @default.
- W2049966453 cites W2002587883 @default.
- W2049966453 cites W2003308803 @default.
- W2049966453 cites W2005877813 @default.
- W2049966453 cites W2010317954 @default.
- W2049966453 cites W2011787115 @default.
- W2049966453 cites W2015788316 @default.
- W2049966453 cites W2024956788 @default.
- W2049966453 cites W2026675034 @default.
- W2049966453 cites W2035574779 @default.
- W2049966453 cites W2040408329 @default.
- W2049966453 cites W2045438840 @default.
- W2049966453 cites W2045528450 @default.
- W2049966453 cites W2048255241 @default.
- W2049966453 cites W2048822944 @default.
- W2049966453 cites W2050413861 @default.
- W2049966453 cites W2050948393 @default.
- W2049966453 cites W2053696069 @default.
- W2049966453 cites W2056627101 @default.
- W2049966453 cites W2056736929 @default.
- W2049966453 cites W2058995199 @default.
- W2049966453 cites W2066527077 @default.
- W2049966453 cites W2070857221 @default.
- W2049966453 cites W2072476675 @default.
- W2049966453 cites W2073212382 @default.
- W2049966453 cites W2077977384 @default.
- W2049966453 cites W2078288112 @default.
- W2049966453 cites W2078652312 @default.
- W2049966453 cites W2081166829 @default.
- W2049966453 cites W2081258920 @default.
- W2049966453 cites W2081995957 @default.
- W2049966453 cites W2084985000 @default.
- W2049966453 cites W2093795718 @default.
- W2049966453 cites W2094343018 @default.
- W2049966453 cites W2098235604 @default.
- W2049966453 cites W2098901467 @default.
- W2049966453 cites W2108716889 @default.
- W2049966453 cites W2117200354 @default.
- W2049966453 cites W2117685855 @default.
- W2049966453 cites W2124888361 @default.
- W2049966453 cites W2130697344 @default.
- W2049966453 cites W2131755436 @default.
- W2049966453 cites W2137167961 @default.
- W2049966453 cites W2158924381 @default.
- W2049966453 cites W2170091491 @default.
- W2049966453 cites W2171343565 @default.
- W2049966453 cites W2314758331 @default.
- W2049966453 cites W2317189594 @default.
- W2049966453 cites W2468928156 @default.
- W2049966453 cites W259920609 @default.
- W2049966453 cites W2951525518 @default.
- W2049966453 cites W2029071101 @default.
- W2049966453 cites W2126890319 @default.
- W2049966453 doi "https://doi.org/10.1016/0169-1368(92)90012-a" @default.
- W2049966453 hasPublicationYear "1992" @default.
- W2049966453 type Work @default.
- W2049966453 sameAs 2049966453 @default.
- W2049966453 citedByCount "64" @default.
- W2049966453 countsByYear W20499664532012 @default.
- W2049966453 countsByYear W20499664532013 @default.
- W2049966453 countsByYear W20499664532015 @default.
- W2049966453 countsByYear W20499664532016 @default.
- W2049966453 countsByYear W20499664532017 @default.
- W2049966453 countsByYear W20499664532018 @default.
- W2049966453 countsByYear W20499664532019 @default.
- W2049966453 countsByYear W20499664532020 @default.
- W2049966453 countsByYear W20499664532021 @default.
- W2049966453 countsByYear W20499664532022 @default.
- W2049966453 countsByYear W20499664532023 @default.
- W2049966453 crossrefType "journal-article" @default.
- W2049966453 hasAuthorship W2049966453A5080468767 @default.
- W2049966453 hasConcept C127313418 @default.
- W2049966453 hasConcept C147789679 @default.
- W2049966453 hasConcept C155574463 @default.
- W2049966453 hasConcept C16946580 @default.
- W2049966453 hasConcept C178790620 @default.