Matches in SemOpenAlex for { <https://semopenalex.org/work/W2049968172> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2049968172 abstract "Abstract Full field flow simulators utilize a variety of cell geometries ranging from simple rectangles to complex corner point systems. One of the benefits of corner-point cells is the ease with which we may represent faulted reservoirs. Each face of a cell may be juxtaposed to two or more cells, depending on the fault throw and the lateral displacements of adjacent cells. Conventional finite-difference approaches routinely include the flux between these cells as non-neighbor connections. Other examples of non-neighbor or non-standard connections occur at the boundary of local grid refinement (LGR) or local grid coarsening (LGC) regions where two computational grids come into juxtaposition. In each of these instances, the velocity across the non-standard faces of a cell will be unevenly distributed according to the non-neighbor fluxes. In contrast, the standard streamline velocity interpolation model (Pollock's scheme) used within a cell assumes that the flux be evenly distributed on each cell face, inconsistent with the non-neighbor connection fluxes. Streamlines traced with such an approach do not have sufficient degrees of freedom to be consistent with the finite-difference fluxes, and consequently will not follow a physical flow path. We propose a strategy that provides a consistent representation for streamlines and velocities near faults and non-neighbor connections. Our approach is based on a simple local (boundary layer) refinement construction that can be used to honor the fluxes at each face, without impacting the representation of flow within the cell or on any other cell face. The local refinement construction is the simplest extension to three dimensions for faulted reservoir cells which provides consistency with the finite difference flux calculation. Several examples will be presented for a single pair of cells juxtaposed across a fault and at LGR boundaries to illustrate the difficulties in conventional tracing algorithms and the benefits of our approach. The practical utility of our algorithm is demonstrated in a structurally complex and heavily faulted full field model. The reservoir geometry includes multiple cells with complex fault juxtaposition and several non-neighbor configurations in different faces. This treatment is contrasted with the usual approach and the implications for reservoir scale fluid flow tracing by streamlines is examined Introduction Accurate streamline tracing and time of flight calculations are one of the cornerstones of streamline simulation. The linear velocity interpolation model proposed by Pollock (1988) is by far the most commonly used tracing algorithm in current streamline simulators. Pollock's method is well suited for Cartesian geometries. However, conventional full field flow simulators routinely utilize a much richer set of cell geometries than simple rectangles, and the velocity fields they model are often more complex than linear. There are many possible generalizations to the Pollock's solution for rectangular cells (Datta-Gupta and King, 2007). There are three requirements that guide us when examining these choices.Flux Continuity: It is necessary that the streamline velocity models we use within each cell provide continuous flux between the cells. Not all numerical schemes require flux continuity: only those that do will generate physically correct streamline trajectories.Sufficiency: There must be sufficient degrees of freedom in the representation of velocity tosatisfy face flux continuity,represent compressible flow, andrepresent flow near wells.Simplicity: The solutions need to reduce to the known solution for 2D incompressible flow. This is the only specific problem where an explicit streamfunction is available to guide us, and to provide a degree of rigor." @default.
- W2049968172 created "2016-06-24" @default.
- W2049968172 creator A5046500433 @default.
- W2049968172 creator A5060224855 @default.
- W2049968172 creator A5072724263 @default.
- W2049968172 date "2008-04-20" @default.
- W2049968172 modified "2023-10-18" @default.
- W2049968172 title "Streamline Tracing in Complex Faulted Systems and Non-Neighbor Connections" @default.
- W2049968172 doi "https://doi.org/10.2118/113425-ms" @default.
- W2049968172 hasPublicationYear "2008" @default.
- W2049968172 type Work @default.
- W2049968172 sameAs 2049968172 @default.
- W2049968172 citedByCount "7" @default.
- W2049968172 countsByYear W20499681722012 @default.
- W2049968172 countsByYear W20499681722016 @default.
- W2049968172 crossrefType "proceedings-article" @default.
- W2049968172 hasAuthorship W2049968172A5046500433 @default.
- W2049968172 hasAuthorship W2049968172A5060224855 @default.
- W2049968172 hasAuthorship W2049968172A5072724263 @default.
- W2049968172 hasConcept C113238511 @default.
- W2049968172 hasConcept C11413529 @default.
- W2049968172 hasConcept C114614502 @default.
- W2049968172 hasConcept C121332964 @default.
- W2049968172 hasConcept C134306372 @default.
- W2049968172 hasConcept C144024400 @default.
- W2049968172 hasConcept C154945302 @default.
- W2049968172 hasConcept C17744445 @default.
- W2049968172 hasConcept C184720557 @default.
- W2049968172 hasConcept C187691185 @default.
- W2049968172 hasConcept C199539241 @default.
- W2049968172 hasConcept C2524010 @default.
- W2049968172 hasConcept C2776359362 @default.
- W2049968172 hasConcept C2779304628 @default.
- W2049968172 hasConcept C33923547 @default.
- W2049968172 hasConcept C36289849 @default.
- W2049968172 hasConcept C38349280 @default.
- W2049968172 hasConcept C41008148 @default.
- W2049968172 hasConcept C57879066 @default.
- W2049968172 hasConcept C60439489 @default.
- W2049968172 hasConcept C62354387 @default.
- W2049968172 hasConcept C94625758 @default.
- W2049968172 hasConceptScore W2049968172C113238511 @default.
- W2049968172 hasConceptScore W2049968172C11413529 @default.
- W2049968172 hasConceptScore W2049968172C114614502 @default.
- W2049968172 hasConceptScore W2049968172C121332964 @default.
- W2049968172 hasConceptScore W2049968172C134306372 @default.
- W2049968172 hasConceptScore W2049968172C144024400 @default.
- W2049968172 hasConceptScore W2049968172C154945302 @default.
- W2049968172 hasConceptScore W2049968172C17744445 @default.
- W2049968172 hasConceptScore W2049968172C184720557 @default.
- W2049968172 hasConceptScore W2049968172C187691185 @default.
- W2049968172 hasConceptScore W2049968172C199539241 @default.
- W2049968172 hasConceptScore W2049968172C2524010 @default.
- W2049968172 hasConceptScore W2049968172C2776359362 @default.
- W2049968172 hasConceptScore W2049968172C2779304628 @default.
- W2049968172 hasConceptScore W2049968172C33923547 @default.
- W2049968172 hasConceptScore W2049968172C36289849 @default.
- W2049968172 hasConceptScore W2049968172C38349280 @default.
- W2049968172 hasConceptScore W2049968172C41008148 @default.
- W2049968172 hasConceptScore W2049968172C57879066 @default.
- W2049968172 hasConceptScore W2049968172C60439489 @default.
- W2049968172 hasConceptScore W2049968172C62354387 @default.
- W2049968172 hasConceptScore W2049968172C94625758 @default.
- W2049968172 hasLocation W20499681721 @default.
- W2049968172 hasOpenAccess W2049968172 @default.
- W2049968172 hasPrimaryLocation W20499681721 @default.
- W2049968172 hasRelatedWork W1549289070 @default.
- W2049968172 hasRelatedWork W2029063201 @default.
- W2049968172 hasRelatedWork W2090648278 @default.
- W2049968172 hasRelatedWork W2094555640 @default.
- W2049968172 hasRelatedWork W2155152230 @default.
- W2049968172 hasRelatedWork W2235901260 @default.
- W2049968172 hasRelatedWork W2319269581 @default.
- W2049968172 hasRelatedWork W2380963126 @default.
- W2049968172 hasRelatedWork W272094509 @default.
- W2049968172 hasRelatedWork W4230686618 @default.
- W2049968172 isParatext "false" @default.
- W2049968172 isRetracted "false" @default.
- W2049968172 magId "2049968172" @default.
- W2049968172 workType "article" @default.