Matches in SemOpenAlex for { <https://semopenalex.org/work/W2049976476> ?p ?o ?g. }
- W2049976476 endingPage "320" @default.
- W2049976476 startingPage "308" @default.
- W2049976476 abstract "Conventional estimators for the expected value of sample information (EVSI) are computationally expensive or limited to specific analytic scenarios. I describe a novel approach that allows efficient EVSI computation for a wide range of study designs and is applicable to models of arbitrary complexity.The posterior parameter distribution produced by a hypothetical study is estimated by reweighting existing draws from the prior distribution. EVSI can then be estimated using a conventional probabilistic sensitivity analysis, with no further model evaluations and with a simple sequence of calculations (Algorithm 1). A refinement to this approach (Algorithm 2) uses smoothing techniques to improve accuracy. Algorithm performance was compared with the conventional EVSI estimator (2-level Monte Carlo integration) and an alternative developed by Brennan and Kharroubi (BK), in a cost-effectiveness case study.Compared with the conventional estimator, Algorithm 2 exhibited a root mean square error (RMSE) 8%-17% lower, with far fewer model evaluations (3-4 orders of magnitude). Algorithm 1 produced results similar to those of the conventional estimator when study evidence was weak but underestimated EVSI when study evidence was strong. Compared with the BK estimator, the proposed algorithms reduced RSME by 18%-38% in most analytic scenarios, with 40 times fewer model evaluations. Algorithm 1 performed poorly in the context of strong study evidence. All methods were sensitive to the number of samples in the outer loop of the simulation.The proposed algorithms remove two major challenges for estimating EVSI--the difficulty of estimating the posterior parameter distribution given hypothetical study data and the need for many model evaluations to obtain stable and unbiased results. These approaches make EVSI estimation feasible for a wide range of analytic scenarios." @default.
- W2049976476 created "2016-06-24" @default.
- W2049976476 creator A5068219287 @default.
- W2049976476 date "2015-04-24" @default.
- W2049976476 modified "2023-10-16" @default.
- W2049976476 title "An Efficient Estimator for the Expected Value of Sample Information" @default.
- W2049976476 cites W1956707416 @default.
- W2049976476 cites W1980464765 @default.
- W2049976476 cites W1992447918 @default.
- W2049976476 cites W1997398805 @default.
- W2049976476 cites W2008886317 @default.
- W2049976476 cites W2046617895 @default.
- W2049976476 cites W2050297356 @default.
- W2049976476 cites W2066723335 @default.
- W2049976476 cites W2069629877 @default.
- W2049976476 cites W2087025145 @default.
- W2049976476 cites W2089559680 @default.
- W2049976476 cites W2109752983 @default.
- W2049976476 cites W2119160928 @default.
- W2049976476 cites W2127505685 @default.
- W2049976476 cites W2140011409 @default.
- W2049976476 cites W2157477694 @default.
- W2049976476 cites W2157963336 @default.
- W2049976476 cites W3122426397 @default.
- W2049976476 cites W4211049957 @default.
- W2049976476 doi "https://doi.org/10.1177/0272989x15583495" @default.
- W2049976476 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25911600" @default.
- W2049976476 hasPublicationYear "2015" @default.
- W2049976476 type Work @default.
- W2049976476 sameAs 2049976476 @default.
- W2049976476 citedByCount "26" @default.
- W2049976476 countsByYear W20499764762016 @default.
- W2049976476 countsByYear W20499764762017 @default.
- W2049976476 countsByYear W20499764762018 @default.
- W2049976476 countsByYear W20499764762019 @default.
- W2049976476 countsByYear W20499764762020 @default.
- W2049976476 countsByYear W20499764762021 @default.
- W2049976476 countsByYear W20499764762022 @default.
- W2049976476 countsByYear W20499764762023 @default.
- W2049976476 crossrefType "journal-article" @default.
- W2049976476 hasAuthorship W2049976476A5068219287 @default.
- W2049976476 hasConcept C105795698 @default.
- W2049976476 hasConcept C11413529 @default.
- W2049976476 hasConcept C126255220 @default.
- W2049976476 hasConcept C127413603 @default.
- W2049976476 hasConcept C129848803 @default.
- W2049976476 hasConcept C139945424 @default.
- W2049976476 hasConcept C151730666 @default.
- W2049976476 hasConcept C159985019 @default.
- W2049976476 hasConcept C185429906 @default.
- W2049976476 hasConcept C192562407 @default.
- W2049976476 hasConcept C19499675 @default.
- W2049976476 hasConcept C204323151 @default.
- W2049976476 hasConcept C21200559 @default.
- W2049976476 hasConcept C24326235 @default.
- W2049976476 hasConcept C2779343474 @default.
- W2049976476 hasConcept C33923547 @default.
- W2049976476 hasConcept C3770464 @default.
- W2049976476 hasConcept C41008148 @default.
- W2049976476 hasConcept C45374587 @default.
- W2049976476 hasConcept C86803240 @default.
- W2049976476 hasConceptScore W2049976476C105795698 @default.
- W2049976476 hasConceptScore W2049976476C11413529 @default.
- W2049976476 hasConceptScore W2049976476C126255220 @default.
- W2049976476 hasConceptScore W2049976476C127413603 @default.
- W2049976476 hasConceptScore W2049976476C129848803 @default.
- W2049976476 hasConceptScore W2049976476C139945424 @default.
- W2049976476 hasConceptScore W2049976476C151730666 @default.
- W2049976476 hasConceptScore W2049976476C159985019 @default.
- W2049976476 hasConceptScore W2049976476C185429906 @default.
- W2049976476 hasConceptScore W2049976476C192562407 @default.
- W2049976476 hasConceptScore W2049976476C19499675 @default.
- W2049976476 hasConceptScore W2049976476C204323151 @default.
- W2049976476 hasConceptScore W2049976476C21200559 @default.
- W2049976476 hasConceptScore W2049976476C24326235 @default.
- W2049976476 hasConceptScore W2049976476C2779343474 @default.
- W2049976476 hasConceptScore W2049976476C33923547 @default.
- W2049976476 hasConceptScore W2049976476C3770464 @default.
- W2049976476 hasConceptScore W2049976476C41008148 @default.
- W2049976476 hasConceptScore W2049976476C45374587 @default.
- W2049976476 hasConceptScore W2049976476C86803240 @default.
- W2049976476 hasIssue "3" @default.
- W2049976476 hasLocation W20499764761 @default.
- W2049976476 hasLocation W20499764762 @default.
- W2049976476 hasOpenAccess W2049976476 @default.
- W2049976476 hasPrimaryLocation W20499764761 @default.
- W2049976476 hasRelatedWork W1902901165 @default.
- W2049976476 hasRelatedWork W1972875178 @default.
- W2049976476 hasRelatedWork W2046481462 @default.
- W2049976476 hasRelatedWork W2056921770 @default.
- W2049976476 hasRelatedWork W2057722517 @default.
- W2049976476 hasRelatedWork W2060764443 @default.
- W2049976476 hasRelatedWork W2082092036 @default.
- W2049976476 hasRelatedWork W2185801267 @default.
- W2049976476 hasRelatedWork W2794300563 @default.
- W2049976476 hasRelatedWork W2893031534 @default.
- W2049976476 hasVolume "36" @default.
- W2049976476 isParatext "false" @default.