Matches in SemOpenAlex for { <https://semopenalex.org/work/W2049986507> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W2049986507 abstract "This paper presents a speech enhancement algorithm that combines the ensemble empirical mode decomposition (EEMD) and the K-singular value decomposition (K-SVD) dictionary-training algorithm together to obtain clean speech from noisy speech. The EEMD algorithm is firstly employed to obtain intrinsic mode function (IMF) components from noisy speech. The cross-correlations and autocorrelations of each IMF are calculated from the IMF components to filter out the noisy IMF components. Meanwhile, the transition IMF components are again decomposed with EEMD to further remove the noisy component. The remained original IMFs alone with the remained transition IMFs are then superimposed to generate the new noisy speech. The new noisy speech is then sparse de-composed by the K-SVD dictionary-training algorithm with an over-complete dictionary trained from clean speech. Enhanced speech is obtained by recovering the speech signal from sparse coefficient vectors. Different from the traditional speech enhancement algorithms, the algorithm enhances the noisy speech by the sparse representation of noisy speech that has been pre-de-noised with EEMD algorithm previously. Experimental results show that the algorithm achieves significant de-noising results than the traditional spectral subtraction, wavelet threshold de-noising algorithm and K-SVD dictionary-training algorithm under both low SNR situation and high SNR situation." @default.
- W2049986507 created "2016-06-24" @default.
- W2049986507 creator A5012172321 @default.
- W2049986507 creator A5032919424 @default.
- W2049986507 creator A5088302108 @default.
- W2049986507 date "2014-09-01" @default.
- W2049986507 modified "2023-09-25" @default.
- W2049986507 title "Realizing speech enhancement by combining EEMD and K-SVD dictionary training algorithm" @default.
- W2049986507 doi "https://doi.org/10.1109/iscslp.2014.6936575" @default.
- W2049986507 hasPublicationYear "2014" @default.
- W2049986507 type Work @default.
- W2049986507 sameAs 2049986507 @default.
- W2049986507 citedByCount "0" @default.
- W2049986507 crossrefType "proceedings-article" @default.
- W2049986507 hasAuthorship W2049986507A5012172321 @default.
- W2049986507 hasAuthorship W2049986507A5032919424 @default.
- W2049986507 hasAuthorship W2049986507A5088302108 @default.
- W2049986507 hasConcept C106131492 @default.
- W2049986507 hasConcept C11413529 @default.
- W2049986507 hasConcept C115961682 @default.
- W2049986507 hasConcept C124066611 @default.
- W2049986507 hasConcept C153180895 @default.
- W2049986507 hasConcept C154945302 @default.
- W2049986507 hasConcept C163294075 @default.
- W2049986507 hasConcept C22789450 @default.
- W2049986507 hasConcept C25570617 @default.
- W2049986507 hasConcept C2776182073 @default.
- W2049986507 hasConcept C28490314 @default.
- W2049986507 hasConcept C31972630 @default.
- W2049986507 hasConcept C41008148 @default.
- W2049986507 hasConcept C99498987 @default.
- W2049986507 hasConceptScore W2049986507C106131492 @default.
- W2049986507 hasConceptScore W2049986507C11413529 @default.
- W2049986507 hasConceptScore W2049986507C115961682 @default.
- W2049986507 hasConceptScore W2049986507C124066611 @default.
- W2049986507 hasConceptScore W2049986507C153180895 @default.
- W2049986507 hasConceptScore W2049986507C154945302 @default.
- W2049986507 hasConceptScore W2049986507C163294075 @default.
- W2049986507 hasConceptScore W2049986507C22789450 @default.
- W2049986507 hasConceptScore W2049986507C25570617 @default.
- W2049986507 hasConceptScore W2049986507C2776182073 @default.
- W2049986507 hasConceptScore W2049986507C28490314 @default.
- W2049986507 hasConceptScore W2049986507C31972630 @default.
- W2049986507 hasConceptScore W2049986507C41008148 @default.
- W2049986507 hasConceptScore W2049986507C99498987 @default.
- W2049986507 hasLocation W20499865071 @default.
- W2049986507 hasOpenAccess W2049986507 @default.
- W2049986507 hasPrimaryLocation W20499865071 @default.
- W2049986507 hasRelatedWork W120616854 @default.
- W2049986507 hasRelatedWork W1529020625 @default.
- W2049986507 hasRelatedWork W1975567633 @default.
- W2049986507 hasRelatedWork W1980687383 @default.
- W2049986507 hasRelatedWork W1988673033 @default.
- W2049986507 hasRelatedWork W2035543666 @default.
- W2049986507 hasRelatedWork W2072884270 @default.
- W2049986507 hasRelatedWork W2115225836 @default.
- W2049986507 hasRelatedWork W2167873188 @default.
- W2049986507 hasRelatedWork W2289179757 @default.
- W2049986507 hasRelatedWork W2294729106 @default.
- W2049986507 hasRelatedWork W2354377360 @default.
- W2049986507 hasRelatedWork W2358676653 @default.
- W2049986507 hasRelatedWork W2383194484 @default.
- W2049986507 hasRelatedWork W2391681714 @default.
- W2049986507 hasRelatedWork W2904160873 @default.
- W2049986507 hasRelatedWork W3046401261 @default.
- W2049986507 hasRelatedWork W3048987747 @default.
- W2049986507 hasRelatedWork W3104349486 @default.
- W2049986507 hasRelatedWork W9997782 @default.
- W2049986507 isParatext "false" @default.
- W2049986507 isRetracted "false" @default.
- W2049986507 magId "2049986507" @default.
- W2049986507 workType "article" @default.