Matches in SemOpenAlex for { <https://semopenalex.org/work/W2050018615> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2050018615 endingPage "445" @default.
- W2050018615 startingPage "437" @default.
- W2050018615 abstract "The fault detection and feature extraction of varying speed machinery with multi-component signals are full of difficulties caused by non-stationary machine dynamics and vibrations. In monitoring the vibrations of varying speed machinery, mainly formal signal processing methods based on digital sampling accomplished in equal time intervals become unsuitable. On the other hand, energy and Shannon entropy distribution of gear vibration signals measured in time-frequency plane would be different from the distribution under the normal state, when faults occur in the gear. Therefore, it is possible to detect a fault by comparing the energy and Shannon entropy distribution of gear vibration signals with and without fault conditions. In this paper, for fault diagnosis of gearbox in the run-up condition, primarily the obtained vibration signals from an acceleration sensor of automotive gearbox test setup are sampled at constant time increment by an acquisition card. To process the non-stationary vibration signals, the re-sampling technique at constant angle increment is combined with the continuous wavelet transform (CWT) and the wavelet coefficients of the signals are obtained. The Morlet wavelet is used; because impulses in many mechanical dynamic signals are always the indication of faults and the Morlet wavelet is exceedingly comparable to an impulse component. Then, statistical parameters of the wavelet coefficients are extracted that constitute the feature vectors. As a new method, the optimal range of wavelet scales is selected based on the maximum energy to Shannon entropy ratio criteria and consequently feature vectors are reduced. In addition, energy and Shannon entropy of the wavelet coefficients are used as two new features along other statistical parameters as input of the classifier. Finally, a feed-forward multilayer perceptron (MLP) neural network uses the extracted features for classification. The experimental results show that the presented method can diagnose the faults of the gear chip and wear efficiently." @default.
- W2050018615 created "2016-06-24" @default.
- W2050018615 creator A5027691035 @default.
- W2050018615 creator A5079207847 @default.
- W2050018615 date "2014-06-01" @default.
- W2050018615 modified "2023-10-01" @default.
- W2050018615 title "Application of wavelet energy and Shannon entropy for feature extraction in gearbox fault detection under varying speed conditions" @default.
- W2050018615 cites W1969494221 @default.
- W2050018615 cites W1978342349 @default.
- W2050018615 cites W1990657417 @default.
- W2050018615 cites W1993684416 @default.
- W2050018615 cites W1995875735 @default.
- W2050018615 cites W2004436946 @default.
- W2050018615 cites W2005934359 @default.
- W2050018615 cites W2006401463 @default.
- W2050018615 cites W2008598341 @default.
- W2050018615 cites W2011296483 @default.
- W2050018615 cites W2012120314 @default.
- W2050018615 cites W2015605478 @default.
- W2050018615 cites W2034790739 @default.
- W2050018615 cites W2037210563 @default.
- W2050018615 cites W2057361254 @default.
- W2050018615 cites W2067283130 @default.
- W2050018615 cites W2067802406 @default.
- W2050018615 cites W2089071921 @default.
- W2050018615 cites W2091205549 @default.
- W2050018615 cites W2102211123 @default.
- W2050018615 cites W2130692248 @default.
- W2050018615 cites W2766023767 @default.
- W2050018615 cites W4241257111 @default.
- W2050018615 doi "https://doi.org/10.1016/j.neucom.2013.12.018" @default.
- W2050018615 hasPublicationYear "2014" @default.
- W2050018615 type Work @default.
- W2050018615 sameAs 2050018615 @default.
- W2050018615 citedByCount "147" @default.
- W2050018615 countsByYear W20500186152014 @default.
- W2050018615 countsByYear W20500186152015 @default.
- W2050018615 countsByYear W20500186152016 @default.
- W2050018615 countsByYear W20500186152017 @default.
- W2050018615 countsByYear W20500186152018 @default.
- W2050018615 countsByYear W20500186152019 @default.
- W2050018615 countsByYear W20500186152020 @default.
- W2050018615 countsByYear W20500186152021 @default.
- W2050018615 countsByYear W20500186152022 @default.
- W2050018615 countsByYear W20500186152023 @default.
- W2050018615 crossrefType "journal-article" @default.
- W2050018615 hasAuthorship W2050018615A5027691035 @default.
- W2050018615 hasAuthorship W2050018615A5079207847 @default.
- W2050018615 hasConcept C106301342 @default.
- W2050018615 hasConcept C121332964 @default.
- W2050018615 hasConcept C152745839 @default.
- W2050018615 hasConcept C153180895 @default.
- W2050018615 hasConcept C154945302 @default.
- W2050018615 hasConcept C172707124 @default.
- W2050018615 hasConcept C41008148 @default.
- W2050018615 hasConcept C47432892 @default.
- W2050018615 hasConcept C52622490 @default.
- W2050018615 hasConcept C62520636 @default.
- W2050018615 hasConceptScore W2050018615C106301342 @default.
- W2050018615 hasConceptScore W2050018615C121332964 @default.
- W2050018615 hasConceptScore W2050018615C152745839 @default.
- W2050018615 hasConceptScore W2050018615C153180895 @default.
- W2050018615 hasConceptScore W2050018615C154945302 @default.
- W2050018615 hasConceptScore W2050018615C172707124 @default.
- W2050018615 hasConceptScore W2050018615C41008148 @default.
- W2050018615 hasConceptScore W2050018615C47432892 @default.
- W2050018615 hasConceptScore W2050018615C52622490 @default.
- W2050018615 hasConceptScore W2050018615C62520636 @default.
- W2050018615 hasLocation W20500186151 @default.
- W2050018615 hasOpenAccess W2050018615 @default.
- W2050018615 hasPrimaryLocation W20500186151 @default.
- W2050018615 hasRelatedWork W1964120219 @default.
- W2050018615 hasRelatedWork W2000165426 @default.
- W2050018615 hasRelatedWork W2136054869 @default.
- W2050018615 hasRelatedWork W2144059113 @default.
- W2050018615 hasRelatedWork W2146076056 @default.
- W2050018615 hasRelatedWork W2541950815 @default.
- W2050018615 hasRelatedWork W2811390910 @default.
- W2050018615 hasRelatedWork W2895927218 @default.
- W2050018615 hasRelatedWork W2897410528 @default.
- W2050018615 hasRelatedWork W3003836766 @default.
- W2050018615 hasVolume "133" @default.
- W2050018615 isParatext "false" @default.
- W2050018615 isRetracted "false" @default.
- W2050018615 magId "2050018615" @default.
- W2050018615 workType "article" @default.