Matches in SemOpenAlex for { <https://semopenalex.org/work/W2050034556> ?p ?o ?g. }
- W2050034556 endingPage "505" @default.
- W2050034556 startingPage "497" @default.
- W2050034556 abstract "Purpose The discovery of effective biomarkers is a fundamental goal of molecular medicine. Developing a systems–biology understanding of radiosensitivity can enhance our ability of identifying radiation-specific biomarkers. Methods and Materials Radiosensitivity, as represented by the survival fraction at 2 Gy was modeled in 48 human cancer cell lines. We applied a linear regression algorithm that integrates gene expression with biological variables, including ras status (mut/wt), tissue of origin and p53 status (mut/wt). Results The biomarker discovery platform is a network representation of the top 500 genes identified by linear regression analysis. This network was reduced to a 10-hub network that includes c-Jun, HDAC1, RELA (p65 subunit of NFKB), PKC-beta, SUMO-1, c-Abl, STAT1, AR, CDK1, and IRF1. Nine targets associated with radiosensitization drugs are linked to the network, demonstrating clinical relevance. Furthermore, the model identified four significant radiosensitivity clusters of terms and genes. Ras was a dominant variable in the analysis, as was the tissue of origin, and their interaction with gene expression but not p53. Overrepresented biological pathways differed between clusters but included DNA repair, cell cycle, apoptosis, and metabolism. The c-Jun network hub was validated using a knockdown approach in 8 human cell lines representing lung, colon, and breast cancers. Conclusion We have developed a novel radiation-biomarker discovery platform using a systems biology modeling approach. We believe this platform will play a central role in the integration of biology into clinical radiation oncology practice. The discovery of effective biomarkers is a fundamental goal of molecular medicine. Developing a systems–biology understanding of radiosensitivity can enhance our ability of identifying radiation-specific biomarkers. Radiosensitivity, as represented by the survival fraction at 2 Gy was modeled in 48 human cancer cell lines. We applied a linear regression algorithm that integrates gene expression with biological variables, including ras status (mut/wt), tissue of origin and p53 status (mut/wt). The biomarker discovery platform is a network representation of the top 500 genes identified by linear regression analysis. This network was reduced to a 10-hub network that includes c-Jun, HDAC1, RELA (p65 subunit of NFKB), PKC-beta, SUMO-1, c-Abl, STAT1, AR, CDK1, and IRF1. Nine targets associated with radiosensitization drugs are linked to the network, demonstrating clinical relevance. Furthermore, the model identified four significant radiosensitivity clusters of terms and genes. Ras was a dominant variable in the analysis, as was the tissue of origin, and their interaction with gene expression but not p53. Overrepresented biological pathways differed between clusters but included DNA repair, cell cycle, apoptosis, and metabolism. The c-Jun network hub was validated using a knockdown approach in 8 human cell lines representing lung, colon, and breast cancers. We have developed a novel radiation-biomarker discovery platform using a systems biology modeling approach. We believe this platform will play a central role in the integration of biology into clinical radiation oncology practice." @default.
- W2050034556 created "2016-06-24" @default.
- W2050034556 creator A5010264712 @default.
- W2050034556 creator A5016154594 @default.
- W2050034556 creator A5026325794 @default.
- W2050034556 creator A5059501045 @default.
- W2050034556 creator A5063512998 @default.
- W2050034556 creator A5067051192 @default.
- W2050034556 creator A5087985396 @default.
- W2050034556 date "2009-10-01" @default.
- W2050034556 modified "2023-10-16" @default.
- W2050034556 title "Systems Biology Modeling of the Radiation Sensitivity Network: A Biomarker Discovery Platform" @default.
- W2050034556 cites W1481979447 @default.
- W2050034556 cites W1567963271 @default.
- W2050034556 cites W1966580149 @default.
- W2050034556 cites W1967054089 @default.
- W2050034556 cites W1978486653 @default.
- W2050034556 cites W1986311875 @default.
- W2050034556 cites W1986342354 @default.
- W2050034556 cites W2000411929 @default.
- W2050034556 cites W2000771269 @default.
- W2050034556 cites W2008719853 @default.
- W2050034556 cites W2009819980 @default.
- W2050034556 cites W2013942657 @default.
- W2050034556 cites W2032666329 @default.
- W2050034556 cites W2032780125 @default.
- W2050034556 cites W2033981637 @default.
- W2050034556 cites W2035530476 @default.
- W2050034556 cites W2040881358 @default.
- W2050034556 cites W2041186477 @default.
- W2050034556 cites W2047258328 @default.
- W2050034556 cites W2049186397 @default.
- W2050034556 cites W2052446965 @default.
- W2050034556 cites W2069628816 @default.
- W2050034556 cites W2071846634 @default.
- W2050034556 cites W2075092060 @default.
- W2050034556 cites W2081566809 @default.
- W2050034556 cites W2085827128 @default.
- W2050034556 cites W2087982858 @default.
- W2050034556 cites W2090519609 @default.
- W2050034556 cites W2106789440 @default.
- W2050034556 cites W2114739452 @default.
- W2050034556 cites W2122128696 @default.
- W2050034556 cites W2128985829 @default.
- W2050034556 cites W2130790725 @default.
- W2050034556 cites W2135645554 @default.
- W2050034556 cites W2138522837 @default.
- W2050034556 cites W2140886327 @default.
- W2050034556 cites W2152667098 @default.
- W2050034556 cites W2153172903 @default.
- W2050034556 cites W2154098640 @default.
- W2050034556 cites W2160855987 @default.
- W2050034556 cites W3103071483 @default.
- W2050034556 doi "https://doi.org/10.1016/j.ijrobp.2009.05.056" @default.
- W2050034556 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2762403" @default.
- W2050034556 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/19735874" @default.
- W2050034556 hasPublicationYear "2009" @default.
- W2050034556 type Work @default.
- W2050034556 sameAs 2050034556 @default.
- W2050034556 citedByCount "221" @default.
- W2050034556 countsByYear W20500345562012 @default.
- W2050034556 countsByYear W20500345562013 @default.
- W2050034556 countsByYear W20500345562014 @default.
- W2050034556 countsByYear W20500345562015 @default.
- W2050034556 countsByYear W20500345562016 @default.
- W2050034556 countsByYear W20500345562017 @default.
- W2050034556 countsByYear W20500345562018 @default.
- W2050034556 countsByYear W20500345562019 @default.
- W2050034556 countsByYear W20500345562020 @default.
- W2050034556 countsByYear W20500345562021 @default.
- W2050034556 countsByYear W20500345562022 @default.
- W2050034556 countsByYear W20500345562023 @default.
- W2050034556 crossrefType "journal-article" @default.
- W2050034556 hasAuthorship W2050034556A5010264712 @default.
- W2050034556 hasAuthorship W2050034556A5016154594 @default.
- W2050034556 hasAuthorship W2050034556A5026325794 @default.
- W2050034556 hasAuthorship W2050034556A5059501045 @default.
- W2050034556 hasAuthorship W2050034556A5063512998 @default.
- W2050034556 hasAuthorship W2050034556A5067051192 @default.
- W2050034556 hasAuthorship W2050034556A5087985396 @default.
- W2050034556 hasBestOaLocation W20500345562 @default.
- W2050034556 hasConcept C104317684 @default.
- W2050034556 hasConcept C111337013 @default.
- W2050034556 hasConcept C121332964 @default.
- W2050034556 hasConcept C124535831 @default.
- W2050034556 hasConcept C126322002 @default.
- W2050034556 hasConcept C152662350 @default.
- W2050034556 hasConcept C173396325 @default.
- W2050034556 hasConcept C185544564 @default.
- W2050034556 hasConcept C206684579 @default.
- W2050034556 hasConcept C26114605 @default.
- W2050034556 hasConcept C2781197716 @default.
- W2050034556 hasConcept C28225019 @default.
- W2050034556 hasConcept C46111723 @default.
- W2050034556 hasConcept C502942594 @default.
- W2050034556 hasConcept C509974204 @default.
- W2050034556 hasConcept C54355233 @default.
- W2050034556 hasConcept C60644358 @default.