Matches in SemOpenAlex for { <https://semopenalex.org/work/W2050159069> ?p ?o ?g. }
- W2050159069 endingPage "325" @default.
- W2050159069 startingPage "273" @default.
- W2050159069 abstract "Abstract This paper is devoted to the definition and study of a family of model selection oriented estimators that we shall call T-estimators (“T” for tests). Their construction is based on former ideas about deriving estimators from some families of tests due to Le Cam [L.M. Le Cam, Convergence of estimates under dimensionality restrictions, Ann. Statist. 1 (1973) 38–53 and L.M. Le Cam, On local and global properties in the theory of asymptotic normality of experiments, in: M. Puri (Ed.), Stochastic Processes and Related Topics, vol. 1, Academic Press, New York, 1975, pp. 13–54] and Birge [L. Birge, Approximation dans les espaces metriques et theorie de l'estimation, Z. Wahrscheinlichkeitstheorie Verw. Gebiete 65 (1983) 181–237, L. Birge, Sur un theoreme de minimax et son application aux tests, Probab. Math. Statist. 3 (1984) 259–282 and L. Birge, Stabilite et instabilite du risque minimax pour des variables independantes equidistribuees, Ann. Inst. H. Poincare Sect. B 20 (1984) 201–223] and about complexity based model selection from Barron and Cover [A.R. Barron, T.M. Cover, Minimum complexity density estimation, IEEE Trans. Inform. Theory 37 (1991) 1034–1054]. It is well-known that maximum likelihood estimators and, more generally, minimum contrast estimators do suffer from various weaknesses, and their penalized versions as well. In particular they are not robust and they require restrictive assumptions on both the models and the underlying parameter set to work correctly. We propose an alternative construction, which derives an estimator from many simultaneous tests between some probability balls in a suitable metric space. In many cases, although not in all, it results in a penalized M-estimator restricted to a suitable countable set of parameters. On the one hand, this construction should be considered as a theoretical rather than a practical tool because of its high computational complexity. On the other hand, it solves many of the previously mentioned difficulties provided that the tests involved in our construction exist, which is the case for various statistical frameworks including density estimation from i.i.d. variables or estimating the mean of a Gaussian sequence with a known variance. For all such frameworks, the robustness properties of our estimators allow to deal with minimax estimation and model selection in a unified way, since bounding the minimax risk amounts to performing our method with a single, well-chosen, model. This results, for those frameworks, in simple bounds for the minimax risk solely based on some metric properties of the parameter space. Moreover the method applies to various statistical frameworks and can handle essentially all types of models, linear or not, parametric and non-parametric, simultaneously. It also provides a simple way of aggregating preliminary estimators. From these viewpoints, it is much more flexible than traditional methods and allows to derive some results that do not presently seem to be accessible to them." @default.
- W2050159069 created "2016-06-24" @default.
- W2050159069 creator A5078612425 @default.
- W2050159069 date "2006-05-01" @default.
- W2050159069 modified "2023-09-26" @default.
- W2050159069 title "Model selection via testing: an alternative to (penalized) maximum likelihood estimators" @default.
- W2050159069 cites W138682821 @default.
- W2050159069 cites W1484867920 @default.
- W2050159069 cites W1495578089 @default.
- W2050159069 cites W1505749875 @default.
- W2050159069 cites W1521293007 @default.
- W2050159069 cites W1524622012 @default.
- W2050159069 cites W1535258871 @default.
- W2050159069 cites W1538452572 @default.
- W2050159069 cites W1543495496 @default.
- W2050159069 cites W1560153690 @default.
- W2050159069 cites W1565861843 @default.
- W2050159069 cites W1575244755 @default.
- W2050159069 cites W1585566614 @default.
- W2050159069 cites W1634471716 @default.
- W2050159069 cites W1777141204 @default.
- W2050159069 cites W1854990296 @default.
- W2050159069 cites W1963922536 @default.
- W2050159069 cites W1965720095 @default.
- W2050159069 cites W1969606158 @default.
- W2050159069 cites W1969705577 @default.
- W2050159069 cites W1970462541 @default.
- W2050159069 cites W1973513227 @default.
- W2050159069 cites W1989780425 @default.
- W2050159069 cites W1995534261 @default.
- W2050159069 cites W1995771589 @default.
- W2050159069 cites W1996268356 @default.
- W2050159069 cites W2004060143 @default.
- W2050159069 cites W2004485838 @default.
- W2050159069 cites W2004853061 @default.
- W2050159069 cites W2007525292 @default.
- W2050159069 cites W2009247956 @default.
- W2050159069 cites W2010019107 @default.
- W2050159069 cites W2011283296 @default.
- W2050159069 cites W2014002306 @default.
- W2050159069 cites W2016373742 @default.
- W2050159069 cites W2020914331 @default.
- W2050159069 cites W2026147187 @default.
- W2050159069 cites W2026452695 @default.
- W2050159069 cites W2027223319 @default.
- W2050159069 cites W2029115180 @default.
- W2050159069 cites W2034767804 @default.
- W2050159069 cites W2042587503 @default.
- W2050159069 cites W2046031028 @default.
- W2050159069 cites W2051387260 @default.
- W2050159069 cites W2056963858 @default.
- W2050159069 cites W2062772460 @default.
- W2050159069 cites W2062892638 @default.
- W2050159069 cites W2063178190 @default.
- W2050159069 cites W2070086983 @default.
- W2050159069 cites W2071325635 @default.
- W2050159069 cites W2072227363 @default.
- W2050159069 cites W2073098078 @default.
- W2050159069 cites W2073123088 @default.
- W2050159069 cites W2077229208 @default.
- W2050159069 cites W2086874647 @default.
- W2050159069 cites W2089075540 @default.
- W2050159069 cites W2092743072 @default.
- W2050159069 cites W2095734615 @default.
- W2050159069 cites W2116278188 @default.
- W2050159069 cites W2117724895 @default.
- W2050159069 cites W2130315424 @default.
- W2050159069 cites W2146766088 @default.
- W2050159069 cites W2156218552 @default.
- W2050159069 cites W2159058260 @default.
- W2050159069 cites W2164782566 @default.
- W2050159069 cites W2179504854 @default.
- W2050159069 cites W2467917576 @default.
- W2050159069 cites W2481044684 @default.
- W2050159069 cites W2608040558 @default.
- W2050159069 cites W26772505 @default.
- W2050159069 cites W2742264950 @default.
- W2050159069 cites W3122448711 @default.
- W2050159069 cites W5216715 @default.
- W2050159069 cites W2465748195 @default.
- W2050159069 doi "https://doi.org/10.1016/j.anihpb.2005.04.004" @default.
- W2050159069 hasPublicationYear "2006" @default.
- W2050159069 type Work @default.
- W2050159069 sameAs 2050159069 @default.
- W2050159069 citedByCount "113" @default.
- W2050159069 countsByYear W20501590692012 @default.
- W2050159069 countsByYear W20501590692013 @default.
- W2050159069 countsByYear W20501590692014 @default.
- W2050159069 countsByYear W20501590692015 @default.
- W2050159069 countsByYear W20501590692016 @default.
- W2050159069 countsByYear W20501590692017 @default.
- W2050159069 countsByYear W20501590692018 @default.
- W2050159069 countsByYear W20501590692019 @default.
- W2050159069 countsByYear W20501590692020 @default.
- W2050159069 countsByYear W20501590692021 @default.
- W2050159069 countsByYear W20501590692022 @default.
- W2050159069 countsByYear W20501590692023 @default.
- W2050159069 crossrefType "journal-article" @default.