Matches in SemOpenAlex for { <https://semopenalex.org/work/W2050202310> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2050202310 endingPage "323" @default.
- W2050202310 startingPage "315" @default.
- W2050202310 abstract "A novel system which allows arc-welding defect detection and classification is presented in this paper. The spectroscopic analysis of the plasma spectra produced during the welding process is a well-known technique to monitor the quality of the resulting weld seams. The analysis of specific emission lines and the subsequent estimation of the electronic temperature Te profile offers a direct correlation between this parameter and the corresponding weld seams. However, the automatic identification and classification of weld defects has proven to be difficult, and it is usually performed by means of statistical studies of the electronic temperature profile. In this paper, a new approach that allows automatic weld defect detection and classification based in the combined use of principal component analysis (PCA) and an artificial neural network (ANN) is proposed. The plasma spectra captured from the welding process is processed with PCA, which reduces the processing complexity, by performing a data compression in the spectral dimension. The designed ANN, after the selection of a proper data training set, allows automatic detection of weld defects. The proposed technique has been successfully checked. Arc-weld tests on stainless steel are reported, showing a good correlation between the ANN outputs and the classical interpretation of the electronic temperature profile." @default.
- W2050202310 created "2016-06-24" @default.
- W2050202310 creator A5012314261 @default.
- W2050202310 creator A5049317321 @default.
- W2050202310 creator A5051004846 @default.
- W2050202310 creator A5066027957 @default.
- W2050202310 creator A5072823274 @default.
- W2050202310 date "2007-06-01" @default.
- W2050202310 modified "2023-10-16" @default.
- W2050202310 title "Real-time arc-welding defect detection and classification with principal component analysis and artificial neural networks" @default.
- W2050202310 cites W1964855109 @default.
- W2050202310 cites W1971734835 @default.
- W2050202310 cites W2005107383 @default.
- W2050202310 cites W2011420569 @default.
- W2050202310 cites W2017357119 @default.
- W2050202310 cites W2047660609 @default.
- W2050202310 cites W2063760085 @default.
- W2050202310 cites W2118192005 @default.
- W2050202310 cites W2169575450 @default.
- W2050202310 doi "https://doi.org/10.1016/j.ndteint.2006.12.001" @default.
- W2050202310 hasPublicationYear "2007" @default.
- W2050202310 type Work @default.
- W2050202310 sameAs 2050202310 @default.
- W2050202310 citedByCount "121" @default.
- W2050202310 countsByYear W20502023102012 @default.
- W2050202310 countsByYear W20502023102013 @default.
- W2050202310 countsByYear W20502023102014 @default.
- W2050202310 countsByYear W20502023102015 @default.
- W2050202310 countsByYear W20502023102016 @default.
- W2050202310 countsByYear W20502023102017 @default.
- W2050202310 countsByYear W20502023102018 @default.
- W2050202310 countsByYear W20502023102019 @default.
- W2050202310 countsByYear W20502023102020 @default.
- W2050202310 countsByYear W20502023102021 @default.
- W2050202310 countsByYear W20502023102022 @default.
- W2050202310 countsByYear W20502023102023 @default.
- W2050202310 crossrefType "journal-article" @default.
- W2050202310 hasAuthorship W2050202310A5012314261 @default.
- W2050202310 hasAuthorship W2050202310A5049317321 @default.
- W2050202310 hasAuthorship W2050202310A5051004846 @default.
- W2050202310 hasAuthorship W2050202310A5066027957 @default.
- W2050202310 hasAuthorship W2050202310A5072823274 @default.
- W2050202310 hasConcept C111919701 @default.
- W2050202310 hasConcept C127413603 @default.
- W2050202310 hasConcept C153180895 @default.
- W2050202310 hasConcept C154945302 @default.
- W2050202310 hasConcept C19474535 @default.
- W2050202310 hasConcept C27438332 @default.
- W2050202310 hasConcept C41008148 @default.
- W2050202310 hasConcept C50644808 @default.
- W2050202310 hasConcept C78519656 @default.
- W2050202310 hasConcept C98045186 @default.
- W2050202310 hasConceptScore W2050202310C111919701 @default.
- W2050202310 hasConceptScore W2050202310C127413603 @default.
- W2050202310 hasConceptScore W2050202310C153180895 @default.
- W2050202310 hasConceptScore W2050202310C154945302 @default.
- W2050202310 hasConceptScore W2050202310C19474535 @default.
- W2050202310 hasConceptScore W2050202310C27438332 @default.
- W2050202310 hasConceptScore W2050202310C41008148 @default.
- W2050202310 hasConceptScore W2050202310C50644808 @default.
- W2050202310 hasConceptScore W2050202310C78519656 @default.
- W2050202310 hasConceptScore W2050202310C98045186 @default.
- W2050202310 hasIssue "4" @default.
- W2050202310 hasLocation W20502023101 @default.
- W2050202310 hasOpenAccess W2050202310 @default.
- W2050202310 hasPrimaryLocation W20502023101 @default.
- W2050202310 hasRelatedWork W1980511770 @default.
- W2050202310 hasRelatedWork W2029412421 @default.
- W2050202310 hasRelatedWork W2085553065 @default.
- W2050202310 hasRelatedWork W2380927352 @default.
- W2050202310 hasRelatedWork W2577581452 @default.
- W2050202310 hasRelatedWork W2899084033 @default.
- W2050202310 hasRelatedWork W3048981730 @default.
- W2050202310 hasRelatedWork W3178621026 @default.
- W2050202310 hasRelatedWork W4211209597 @default.
- W2050202310 hasRelatedWork W2137598809 @default.
- W2050202310 hasVolume "40" @default.
- W2050202310 isParatext "false" @default.
- W2050202310 isRetracted "false" @default.
- W2050202310 magId "2050202310" @default.
- W2050202310 workType "article" @default.