Matches in SemOpenAlex for { <https://semopenalex.org/work/W2050346931> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W2050346931 endingPage "1024" @default.
- W2050346931 startingPage "1010" @default.
- W2050346931 abstract "We extend the mass-constraint data clustering and vector quantization algorithm to estimate Gaussian Mixture Models (GMMs) as image features applying to the image retrieval problems. The GMM feature is an alternative method to histograms to represent data density distributions. Histograms are well known for their advantages including rotation invariance, low calculation load, and so on. The GMM maintains the rotation invariance properties; moreover, it addresses the high-dimensional problems due to which histograms usually suffer inefficiency problems. The extended mass-constraint (EMass) GMM estimation algorithm is compared with the typical Expectation–Maximization(EM) algorithm, and the deterministic annealing EM (DAEM) algorithm. The three algorithms are applied to train a GMM for a set of simulation data, and compared with the log-likelihood values. From the comparison results, we know that DAEM still has strong dependence on initial data point selection, which is the main problem we need to solve by taking advantage of the deterministic annealing methods. Thus the DAEM algorithm is not chosen to estimate GMM density functions for image retrieval. The EM and EMass algorithms are then applied to train GMMs from image RGB color features for the purpose of image retrieval. Finally the GMM features are combined with the Local Binary Pattern (LBP) features to achieve higher precision retrieval. After we compare the precision/recall curves and mean average precisions achieved by two algorithms, we conclude that the extended mass-constraint algorithm is a better solution for GMM estimation, and combining the GMM and Local Binary Pattern (LBP) provides a new promising feature for image retrieval." @default.
- W2050346931 created "2016-06-24" @default.
- W2050346931 creator A5030700018 @default.
- W2050346931 creator A5058587755 @default.
- W2050346931 creator A5061697282 @default.
- W2050346931 date "2008-08-01" @default.
- W2050346931 modified "2023-09-29" @default.
- W2050346931 title "Applying the extended mass-constraint EM algorithm to image retrieval" @default.
- W2050346931 cites W2007463795 @default.
- W2050346931 cites W2107463194 @default.
- W2050346931 cites W2150692003 @default.
- W2050346931 cites W2151821886 @default.
- W2050346931 cites W2152321560 @default.
- W2050346931 cites W2161877964 @default.
- W2050346931 cites W2914885528 @default.
- W2050346931 cites W3148595793 @default.
- W2050346931 doi "https://doi.org/10.1016/j.camwa.2007.07.019" @default.
- W2050346931 hasPublicationYear "2008" @default.
- W2050346931 type Work @default.
- W2050346931 sameAs 2050346931 @default.
- W2050346931 citedByCount "5" @default.
- W2050346931 countsByYear W20503469312012 @default.
- W2050346931 countsByYear W20503469312020 @default.
- W2050346931 crossrefType "journal-article" @default.
- W2050346931 hasAuthorship W2050346931A5030700018 @default.
- W2050346931 hasAuthorship W2050346931A5058587755 @default.
- W2050346931 hasAuthorship W2050346931A5061697282 @default.
- W2050346931 hasBestOaLocation W20503469311 @default.
- W2050346931 hasConcept C11413529 @default.
- W2050346931 hasConcept C115961682 @default.
- W2050346931 hasConcept C154945302 @default.
- W2050346931 hasConcept C2524010 @default.
- W2050346931 hasConcept C2776036281 @default.
- W2050346931 hasConcept C33923547 @default.
- W2050346931 hasConcept C41008148 @default.
- W2050346931 hasConceptScore W2050346931C11413529 @default.
- W2050346931 hasConceptScore W2050346931C115961682 @default.
- W2050346931 hasConceptScore W2050346931C154945302 @default.
- W2050346931 hasConceptScore W2050346931C2524010 @default.
- W2050346931 hasConceptScore W2050346931C2776036281 @default.
- W2050346931 hasConceptScore W2050346931C33923547 @default.
- W2050346931 hasConceptScore W2050346931C41008148 @default.
- W2050346931 hasIssue "4" @default.
- W2050346931 hasLocation W20503469311 @default.
- W2050346931 hasOpenAccess W2050346931 @default.
- W2050346931 hasPrimaryLocation W20503469311 @default.
- W2050346931 hasRelatedWork W2005185696 @default.
- W2050346931 hasRelatedWork W2080410347 @default.
- W2050346931 hasRelatedWork W2098278475 @default.
- W2050346931 hasRelatedWork W2127881447 @default.
- W2050346931 hasRelatedWork W2215918441 @default.
- W2050346931 hasRelatedWork W2380007170 @default.
- W2050346931 hasRelatedWork W3108556207 @default.
- W2050346931 hasRelatedWork W3177008965 @default.
- W2050346931 hasRelatedWork W4282040436 @default.
- W2050346931 hasRelatedWork W4308454739 @default.
- W2050346931 hasVolume "56" @default.
- W2050346931 isParatext "false" @default.
- W2050346931 isRetracted "false" @default.
- W2050346931 magId "2050346931" @default.
- W2050346931 workType "article" @default.