Matches in SemOpenAlex for { <https://semopenalex.org/work/W2050351337> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W2050351337 abstract "Abstract Geostatistical modeling techniques are capable of generating high-resolution reservoir models. Since a limited amount of information is available to model the reservoir, geological uncertainty is represented through a suite of equally probable models. Unfortunately, these high-resolution models are often too large to process through numerical flow simulators. Upscaling methods are required that reduce the size of detailed models while preserving the important geological characteristics of the reservoir. Most upscaling methods currently in vogue work with uniform grids. A new upscaling approach based on non-uniform coarsening with optimum power average is presented. The proposed algorithm identifies likely high connectivity regions using streamline simulations, then constructs a non-uniform coarse-scale grid preserving the areas with probable high connectivity and assign equivalent permeability to the coarse grid blocks using an optimum power average technique. The power average exponent is calibrated using the data from a series of single-phase flow simulations. Introduction Upscaling is a procedure that transforms a detailed geological model to a coarse grid simulation model such that the flow behaviour in the two systems is similar. Upscaling is required because fine-scale flow simulation of multiple geostatistical realizations can be CPU (computer processing unit) expensive. Any upscaling procedure involves basically two steps:gridding, to define the new coarse blocks, andaveraging or estimation of properties, to preserve the local geologic details. Numerous upscaling methods have been reported in the literature(1). Nevertheless, efficient and accurate estimation of equivalent rock properties of coarse-scale from geological data at fine-scale remains an active area of research. The simplest numerical procedure for the determination of equivalent permeability involves the solution of the Laplace equation for pressure within the reservoir domain, subject to constant pressure gradient in the direction of flow and no flux perpendicular to it. The limitation of these conditions is that the cross terms of the K tensor (Kxy and Kyx in 2D systems) cannot be determined. Despite this limitation, the approach continues to be used assuming that the diagonal terms of K tensor that are computed are correct and the cross-terms are not important. This is true if the coordinate's direction (i.e. x and y) coincides with the principal directions of the effective permeability tensor. Unfortunately this is not usually the case or known a priori and it can change from one location to another. To overcome this limitation, Durlofsky(2) presented a numerical procedure for the determination of equivalent grid block permeability tensors. The method entails solution of the fine-scale pressure equation, subject to periodic boundary conditions. Symmetric, positive definite equivalent permeability tensors are obtained. A numerical approach to obtain a full tensor consists of using linear boundary conditions(3,4). A pressure gradient is imposed in the flow direction and a linear pressure profile is enforced on the two other opposite faces. This variation results in a non-symmetrical permeability tensor taking into account the cross-flow term. Despite improved representation of flow in heterogeneous media using a permeability tensor, the pressure solver techniques employ approximations such as single-phase flow and simplified boundary conditions." @default.
- W2050351337 created "2016-06-24" @default.
- W2050351337 creator A5055558439 @default.
- W2050351337 creator A5055708917 @default.
- W2050351337 date "2007-07-01" @default.
- W2050351337 modified "2023-09-27" @default.
- W2050351337 title "Upscaling Using a Non-Uniform Coarsened Grid With Optimum Power Average" @default.
- W2050351337 doi "https://doi.org/10.2118/07-07-01" @default.
- W2050351337 hasPublicationYear "2007" @default.
- W2050351337 type Work @default.
- W2050351337 sameAs 2050351337 @default.
- W2050351337 citedByCount "1" @default.
- W2050351337 countsByYear W20503513372015 @default.
- W2050351337 crossrefType "journal-article" @default.
- W2050351337 hasAuthorship W2050351337A5055558439 @default.
- W2050351337 hasAuthorship W2050351337A5055708917 @default.
- W2050351337 hasConcept C111919701 @default.
- W2050351337 hasConcept C11413529 @default.
- W2050351337 hasConcept C126255220 @default.
- W2050351337 hasConcept C127313418 @default.
- W2050351337 hasConcept C166957645 @default.
- W2050351337 hasConcept C187691185 @default.
- W2050351337 hasConcept C2524010 @default.
- W2050351337 hasConcept C3020199158 @default.
- W2050351337 hasConcept C33923547 @default.
- W2050351337 hasConcept C38349280 @default.
- W2050351337 hasConcept C41008148 @default.
- W2050351337 hasConcept C62649853 @default.
- W2050351337 hasConcept C79581498 @default.
- W2050351337 hasConcept C95457728 @default.
- W2050351337 hasConcept C98045186 @default.
- W2050351337 hasConceptScore W2050351337C111919701 @default.
- W2050351337 hasConceptScore W2050351337C11413529 @default.
- W2050351337 hasConceptScore W2050351337C126255220 @default.
- W2050351337 hasConceptScore W2050351337C127313418 @default.
- W2050351337 hasConceptScore W2050351337C166957645 @default.
- W2050351337 hasConceptScore W2050351337C187691185 @default.
- W2050351337 hasConceptScore W2050351337C2524010 @default.
- W2050351337 hasConceptScore W2050351337C3020199158 @default.
- W2050351337 hasConceptScore W2050351337C33923547 @default.
- W2050351337 hasConceptScore W2050351337C38349280 @default.
- W2050351337 hasConceptScore W2050351337C41008148 @default.
- W2050351337 hasConceptScore W2050351337C62649853 @default.
- W2050351337 hasConceptScore W2050351337C79581498 @default.
- W2050351337 hasConceptScore W2050351337C95457728 @default.
- W2050351337 hasConceptScore W2050351337C98045186 @default.
- W2050351337 hasLocation W20503513371 @default.
- W2050351337 hasOpenAccess W2050351337 @default.
- W2050351337 hasPrimaryLocation W20503513371 @default.
- W2050351337 hasRelatedWork W1485225643 @default.
- W2050351337 hasRelatedWork W1523281244 @default.
- W2050351337 hasRelatedWork W2015652851 @default.
- W2050351337 hasRelatedWork W2030467409 @default.
- W2050351337 hasRelatedWork W2055655570 @default.
- W2050351337 hasRelatedWork W2781896738 @default.
- W2050351337 hasRelatedWork W2795139385 @default.
- W2050351337 hasRelatedWork W3023012929 @default.
- W2050351337 hasRelatedWork W3216907963 @default.
- W2050351337 hasRelatedWork W34638566 @default.
- W2050351337 isParatext "false" @default.
- W2050351337 isRetracted "false" @default.
- W2050351337 magId "2050351337" @default.
- W2050351337 workType "article" @default.