Matches in SemOpenAlex for { <https://semopenalex.org/work/W2050401862> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2050401862 endingPage "1068" @default.
- W2050401862 startingPage "1057" @default.
- W2050401862 abstract "Abstract The explicit form of the Mueller scattering matrix, which characterizes the small‐angle light scattering from an anisotropic sphere when the requirements of the Rayleigh‐Gans‐Debye (RGD) approximation are fulfilled, contains all information obtainable about the RGD scattering from an anisotropic sphere taken as a model for a spherulite. A comparison of angular dependences of single matrix elements for the Lorenz‐Mie sphere, the Rayleigh particle, and the simplified form of the presented matrix (taking a sphere without inherent anisotropy, i.e., Δ n = 0) shows very good agreement within the limits of RGD approximations. The polarized small‐angle light scattering intensities H υ and V υ are combinations of the single matrix elements. Their explicit form is in accord with the expressions for H υ and V υ intensities recently rederived from a 2 × 2 amplitude scattering matrix. It has been shown that the angular dependence of matrix elements is determined by the ( n̄ — 1)/Δ n parameter, where n — is the mean refractive index andδ n is the anisotropy, both measured relative to the surrounding medium. The expressions for H υ and V υ intensities derived by Stein and Rhodes fail for a sphere without inherenet anisotropy ( δ n = 0); and the commonly used procedure of size determination from a maximum of H υ intensity has limited validity (it holds only approximately under the condition of a small phase shift and small ( n̄ ‐1)/ δ n ). Further theoretical work must be done to understand and construct scattering models for situations where the RGD approximately is inappropriate." @default.
- W2050401862 created "2016-06-24" @default.
- W2050401862 creator A5030136396 @default.
- W2050401862 date "1991-08-01" @default.
- W2050401862 modified "2023-10-10" @default.
- W2050401862 title "Small‐angle light scattering from an anisotropic sphere: The mueller matrix approach" @default.
- W2050401862 cites W1968644540 @default.
- W2050401862 cites W1973312507 @default.
- W2050401862 cites W1981122591 @default.
- W2050401862 cites W1985138889 @default.
- W2050401862 cites W1994572732 @default.
- W2050401862 cites W1997805158 @default.
- W2050401862 cites W2011994939 @default.
- W2050401862 cites W2020269179 @default.
- W2050401862 cites W2034438801 @default.
- W2050401862 cites W2053228149 @default.
- W2050401862 cites W2064369895 @default.
- W2050401862 cites W2066213393 @default.
- W2050401862 cites W2066471993 @default.
- W2050401862 cites W2071502088 @default.
- W2050401862 cites W2075527502 @default.
- W2050401862 cites W2092537719 @default.
- W2050401862 cites W2110104720 @default.
- W2050401862 cites W2141908310 @default.
- W2050401862 cites W2153823289 @default.
- W2050401862 cites W2156429308 @default.
- W2050401862 cites W2167875605 @default.
- W2050401862 cites W3083094549 @default.
- W2050401862 doi "https://doi.org/10.1002/polb.1991.090290903" @default.
- W2050401862 hasPublicationYear "1991" @default.
- W2050401862 type Work @default.
- W2050401862 sameAs 2050401862 @default.
- W2050401862 citedByCount "4" @default.
- W2050401862 countsByYear W20504018622015 @default.
- W2050401862 crossrefType "journal-article" @default.
- W2050401862 hasAuthorship W2050401862A5030136396 @default.
- W2050401862 hasConcept C106487976 @default.
- W2050401862 hasConcept C120456961 @default.
- W2050401862 hasConcept C120665830 @default.
- W2050401862 hasConcept C121332964 @default.
- W2050401862 hasConcept C153013531 @default.
- W2050401862 hasConcept C159985019 @default.
- W2050401862 hasConcept C191486275 @default.
- W2050401862 hasConcept C192562407 @default.
- W2050401862 hasConcept C26873012 @default.
- W2050401862 hasConcept C28493345 @default.
- W2050401862 hasConcept C36928386 @default.
- W2050401862 hasConcept C41999313 @default.
- W2050401862 hasConcept C46244369 @default.
- W2050401862 hasConcept C63688654 @default.
- W2050401862 hasConcept C85725439 @default.
- W2050401862 hasConceptScore W2050401862C106487976 @default.
- W2050401862 hasConceptScore W2050401862C120456961 @default.
- W2050401862 hasConceptScore W2050401862C120665830 @default.
- W2050401862 hasConceptScore W2050401862C121332964 @default.
- W2050401862 hasConceptScore W2050401862C153013531 @default.
- W2050401862 hasConceptScore W2050401862C159985019 @default.
- W2050401862 hasConceptScore W2050401862C191486275 @default.
- W2050401862 hasConceptScore W2050401862C192562407 @default.
- W2050401862 hasConceptScore W2050401862C26873012 @default.
- W2050401862 hasConceptScore W2050401862C28493345 @default.
- W2050401862 hasConceptScore W2050401862C36928386 @default.
- W2050401862 hasConceptScore W2050401862C41999313 @default.
- W2050401862 hasConceptScore W2050401862C46244369 @default.
- W2050401862 hasConceptScore W2050401862C63688654 @default.
- W2050401862 hasConceptScore W2050401862C85725439 @default.
- W2050401862 hasIssue "9" @default.
- W2050401862 hasLocation W20504018621 @default.
- W2050401862 hasOpenAccess W2050401862 @default.
- W2050401862 hasPrimaryLocation W20504018621 @default.
- W2050401862 hasRelatedWork W1967237450 @default.
- W2050401862 hasRelatedWork W1985830519 @default.
- W2050401862 hasRelatedWork W1992014057 @default.
- W2050401862 hasRelatedWork W2038929103 @default.
- W2050401862 hasRelatedWork W2125349117 @default.
- W2050401862 hasRelatedWork W2384682749 @default.
- W2050401862 hasRelatedWork W2391130816 @default.
- W2050401862 hasRelatedWork W2607822447 @default.
- W2050401862 hasRelatedWork W2922489623 @default.
- W2050401862 hasRelatedWork W268862413 @default.
- W2050401862 hasVolume "29" @default.
- W2050401862 isParatext "false" @default.
- W2050401862 isRetracted "false" @default.
- W2050401862 magId "2050401862" @default.
- W2050401862 workType "article" @default.