Matches in SemOpenAlex for { <https://semopenalex.org/work/W2050505165> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2050505165 endingPage "1188" @default.
- W2050505165 startingPage "1186" @default.
- W2050505165 abstract "To the Editor: Francisella tularensis is the etiologic agent of the zoonotic disease, tularemia. An inoculum as small as 10 bacteria can cause a flulike disease with substantial morbidity and mortality among infected humans.1Isherwood K.E. Titball R.W. Davies D.H. Felgner P.L. Morrow W.J. Vaccination strategies for Francisella tularensis.Adv Drug Deliv Rev. 2005; 57: 1403-1414Crossref PubMed Scopus (35) Google Scholar, 2Oyston P.C. Quarry J.E. Tularemia vaccine: past, present and future.Antonie Van Leeuwenhoek. 2005; 87: 277-281Crossref PubMed Scopus (45) Google Scholar Human tularemia presents in ulceroglandular, oculoglandular, oropharyngeal, pneumonic, and septic forms.1Isherwood K.E. Titball R.W. Davies D.H. Felgner P.L. Morrow W.J. Vaccination strategies for Francisella tularensis.Adv Drug Deliv Rev. 2005; 57: 1403-1414Crossref PubMed Scopus (35) Google Scholar, 3Dennis D.T. Inglesby T.V. Henderson D.A. Bartlett J.G. Ascher M.S. Eitzen E. et al.Tularemia as a biological weapon: medical and public health management.JAMA. 2001; 285: 2763-2773Crossref PubMed Scopus (1181) Google Scholar Rapid administration of antibiotics prevents mortality in the majority of human cases if exposure doses are low and nonaerosol.2Oyston P.C. Quarry J.E. Tularemia vaccine: past, present and future.Antonie Van Leeuwenhoek. 2005; 87: 277-281Crossref PubMed Scopus (45) Google Scholar, 3Dennis D.T. Inglesby T.V. Henderson D.A. Bartlett J.G. Ascher M.S. Eitzen E. et al.Tularemia as a biological weapon: medical and public health management.JAMA. 2001; 285: 2763-2773Crossref PubMed Scopus (1181) Google Scholar, 4Burnett J.C. Henchal E.A. Schmaljohn A.L. Bavari S. The evolving field of biodefence: therapeutic developments and diagnostics.Nat Rev Drug Discov. 2005; 4: 281-296Crossref PubMed Scopus (132) Google Scholar Without early diagnosis and administration of antibiotics, high-dose aerosol exposure progresses rapidly to life-threatening pleuropneumonitis and systemic infection.3Dennis D.T. Inglesby T.V. Henderson D.A. Bartlett J.G. Ascher M.S. Eitzen E. et al.Tularemia as a biological weapon: medical and public health management.JAMA. 2001; 285: 2763-2773Crossref PubMed Scopus (1181) Google Scholar The relative abundance of F tularensis in nature and the relative ease with which it may be administered raise concerns over its exploitation as a biothreat agent.1Isherwood K.E. Titball R.W. Davies D.H. Felgner P.L. Morrow W.J. Vaccination strategies for Francisella tularensis.Adv Drug Deliv Rev. 2005; 57: 1403-1414Crossref PubMed Scopus (35) Google Scholar, 3Dennis D.T. Inglesby T.V. Henderson D.A. Bartlett J.G. Ascher M.S. Eitzen E. et al.Tularemia as a biological weapon: medical and public health management.JAMA. 2001; 285: 2763-2773Crossref PubMed Scopus (1181) Google Scholar, 4Burnett J.C. Henchal E.A. Schmaljohn A.L. Bavari S. The evolving field of biodefence: therapeutic developments and diagnostics.Nat Rev Drug Discov. 2005; 4: 281-296Crossref PubMed Scopus (132) Google Scholar In the 1950s, an attenuated strain of F tularensis was developed into an Investigational New Drug status live vaccine (live vaccine strain [LVS]) administered by intradermal scarification.1Isherwood K.E. Titball R.W. Davies D.H. Felgner P.L. Morrow W.J. Vaccination strategies for Francisella tularensis.Adv Drug Deliv Rev. 2005; 57: 1403-1414Crossref PubMed Scopus (35) Google Scholar, 5Elkins K.L. Cowley S.C. Bosio C.M. Innate and adaptive immune responses to an intracellular bacterium, Francisella tularensis live vaccine strain.Microbes Infect. 2003; 5: 135-142Crossref PubMed Scopus (153) Google Scholar, 6Titball R.W. Oyston P.C. A vaccine for tularaemia.Expert Opin Biol Ther. 2003; 3: 645-653Crossref PubMed Scopus (17) Google Scholar LVS vaccination has significantly lowered reports of laboratory-acquired tularemia, although the mechanism of protection (humoral or cell-mediated) is still unclear.1Isherwood K.E. Titball R.W. Davies D.H. Felgner P.L. Morrow W.J. Vaccination strategies for Francisella tularensis.Adv Drug Deliv Rev. 2005; 57: 1403-1414Crossref PubMed Scopus (35) Google Scholar, 3Dennis D.T. Inglesby T.V. Henderson D.A. Bartlett J.G. Ascher M.S. Eitzen E. et al.Tularemia as a biological weapon: medical and public health management.JAMA. 2001; 285: 2763-2773Crossref PubMed Scopus (1181) Google Scholar, 7Tarnvik A. Nature of protective immunity to Francisella tularensis.Rev Infect Dis. 1989; 11: 440-451Crossref PubMed Scopus (270) Google Scholar Microagglutination assays performed at 28 days postvaccination (indicating anti–F tularensis IgG and IgM) are the clinical standard for gauging successful vaccination yet show poor correlation with specific, vigorous lymphocyte responses in LVS-vaccinated and naturally infected humans.8Tarnvik A. Lofgren S. Stimulation of human lymphocytes by a vaccine strain of Francisella tularensis.Infect Immun. 1975; 12: 951-957PubMed Google Scholar Human anti–F tularensis immune serum resulting from vaccination with LVS is protective only against strains of reduced virulence, yet immunospecific and long-lasting cell-mediated immunity is the key to protection.5Elkins K.L. Cowley S.C. Bosio C.M. Innate and adaptive immune responses to an intracellular bacterium, Francisella tularensis live vaccine strain.Microbes Infect. 2003; 5: 135-142Crossref PubMed Scopus (153) Google Scholar, 7Tarnvik A. Nature of protective immunity to Francisella tularensis.Rev Infect Dis. 1989; 11: 440-451Crossref PubMed Scopus (270) Google Scholar, 9Drabick J.J. Narayanan R.B. Williams J.C. Leduc J.W. Nacy C.A. Passive protection of mice against lethal Francisella tularensis (live tularemia vaccine strain) infection by the sera of human recipients of the live tularemia vaccine.Am J Med Sci. 1994; 308: 83-87Crossref PubMed Scopus (63) Google Scholar Substantial data suggest that cell-mediated immunity may be more important than humoral immunity for providing long-lasting immunity against virulent strains of F tularensis.5Elkins K.L. Cowley S.C. Bosio C.M. Innate and adaptive immune responses to an intracellular bacterium, Francisella tularensis live vaccine strain.Microbes Infect. 2003; 5: 135-142Crossref PubMed Scopus (153) Google Scholar, 7Tarnvik A. Nature of protective immunity to Francisella tularensis.Rev Infect Dis. 1989; 11: 440-451Crossref PubMed Scopus (270) Google Scholar, 9Drabick J.J. Narayanan R.B. Williams J.C. Leduc J.W. Nacy C.A. Passive protection of mice against lethal Francisella tularensis (live tularemia vaccine strain) infection by the sera of human recipients of the live tularemia vaccine.Am J Med Sci. 1994; 308: 83-87Crossref PubMed Scopus (63) Google Scholar Therefore, we examined human immune responses to LVS vaccination to establish early cellular correlates of LVS-mediated protection predictive of successful vaccine outcomes. Volunteers were recruited from US Army Medical Research Institute of Infectious Diseases (USAMRIID) personnel at risk of laboratory exposure to F tularensis. A minimal risk protocol to collect peripheral blood samples was approved by institutional review boards at the USAMRIID (Human Use Committee FY04-16). Donors provided informed consent and met eligibility criteria. Six healthy adults (4 males and 2 females, 22-54 years old) received a primary LVS vaccination and donated peripheral blood prevaccination and postvaccination. Mononuclear cells were purified by Ficoll gradients and assessed for changes in immune cell populations using flow cytometry and quadruple stained using directly conjugated mAbs (BD-Immunocytometry Systems and BD-Pharmingen, La Jolla, Calif). Cytometric bead array analysis was performed on serum samples (BD-Pharmingen). Analysis was performed using FlowJo (TreeStar, Inc, Ashland, Ore) and GraphPad Prism (GraphPad Prism Software, San Diego, Calif). All 6 subjects were immunologically naive before vaccination. All vaccinations had positive responses as indicated by initial formation of a small pustule/papule and subsequent ulceration. Cell surface analysis of mononuclear cells revealed bias toward activation of innate versus acquired immune system components. The greatest changes in cellularity occurred on day +1 (P < .001 for day +1 versus all other days), a time frame consistent with innate immunity, but too short for unprimed acquired responses (Fig 1, A and B). When acquired immune system cells (CD3+, CD4+, CD8+, T-cell receptor [TCR] αβ+, CD45RO+) were analyzed over all time points, only CD4+ and CD8+ cells were significantly changed at day +1 (P < .05 and P < .01, respectively). Although CD4+ and CD8+ cells increased significantly on day +1 (Fig 1, A), these cells were not conventional TCRαβ+ T cells, but rather TCRγδ+ T cells (CD8+/γδTCR+), natural killer (NK) T cells (CD56+/CD8+), and monocytes (CD4+/CD14+) whose kinetics mirrored innate immune responses (Fig 1, B). When innate immune system components (CD56+, CD1a+, TCRγδ+, human leukocyte antigen [HLA]-DR+, CD16+, CD14+) were tracked over the course of the vaccination, NK cells, γδT cells, monocytes, granulocytes, and dendritic cells showed considerable changes in cellularity on day +1. Dramatic increases in γδT cells (Fig 2, A) and NK cells (Fig 2, B) were noted on day +1 (P < .05 and P < .01, respectively), with NK cells having the most prominent changes. LVS vaccination induced a strong proliferative signal for innate lymphocytes as measured by the upregulation of the IL-2 receptor high-affinity α chain, CD25 (Fig 2, C), whose induction is linked with progression into cell cycle.10Herzberg V.L. Smith K.A. T cell growth without serum.J Immunol. 1987; 139: 998-1004PubMed Google Scholar CD25 upregulation was highest on day +1 for all donors (P < .01) and was noted for NKT, γδT, and NK cells. No similar correlations were seen between CD25 and TCRαβ+-CD4+ or TCRαβ+-CD8+ T cells, even at time points associated with primary acquired immune responses, days +8 to +14. Our data strongly suggest that cellularity changes after human LVS vaccination strongly parallel innate immune system kinetics. These data are in accord with the murine LVS model in which mice deficient in T cells are still able to resist lethal LVS challenge for 3 to 4 weeks.5Elkins K.L. Cowley S.C. Bosio C.M. Innate and adaptive immune responses to an intracellular bacterium, Francisella tularensis live vaccine strain.Microbes Infect. 2003; 5: 135-142Crossref PubMed Scopus (153) Google Scholar This protection can be traced to proinflammatory cytokine production by innate immune components, chiefly NK and NKT cells.5Elkins K.L. Cowley S.C. Bosio C.M. Innate and adaptive immune responses to an intracellular bacterium, Francisella tularensis live vaccine strain.Microbes Infect. 2003; 5: 135-142Crossref PubMed Scopus (153) Google Scholar Although serum cytokine levels in our study were below the limit of detection (<20 pg/mL), the upregulation of the high-affinity IL-2 receptor chain (CD25) may indicate that a proinflammatory TH1-type response was induced by LVS vaccination. All 6 of the subjects had positive anti-LVS titers by +28 days, yet there was as much as a 16-fold difference in positive microagglutination titers (Fig 2, D). Cellular responses at day +1 and +2 showed a much tighter cluster across all 6 subjects (less than 2-fold change between subjects), consistent with data suggesting the critical importance of cell-mediated immunity in long-term anti–F tularensis protection.5Elkins K.L. Cowley S.C. Bosio C.M. Innate and adaptive immune responses to an intracellular bacterium, Francisella tularensis live vaccine strain.Microbes Infect. 2003; 5: 135-142Crossref PubMed Scopus (153) Google Scholar, 7Tarnvik A. Nature of protective immunity to Francisella tularensis.Rev Infect Dis. 1989; 11: 440-451Crossref PubMed Scopus (270) Google Scholar, 9Drabick J.J. Narayanan R.B. Williams J.C. Leduc J.W. Nacy C.A. Passive protection of mice against lethal Francisella tularensis (live tularemia vaccine strain) infection by the sera of human recipients of the live tularemia vaccine.Am J Med Sci. 1994; 308: 83-87Crossref PubMed Scopus (63) Google Scholar Surprisingly, postvaccination titer bore no resemblance to the cellular immune response described (Fig 2, D). Combined with data suggesting cell-mediated responses are most critical to anti–F tularensis protective immunity, the question of the role of humoral immunity remains unanswered.5Elkins K.L. Cowley S.C. Bosio C.M. Innate and adaptive immune responses to an intracellular bacterium, Francisella tularensis live vaccine strain.Microbes Infect. 2003; 5: 135-142Crossref PubMed Scopus (153) Google Scholar, 7Tarnvik A. Nature of protective immunity to Francisella tularensis.Rev Infect Dis. 1989; 11: 440-451Crossref PubMed Scopus (270) Google Scholar, 9Drabick J.J. Narayanan R.B. Williams J.C. Leduc J.W. Nacy C.A. Passive protection of mice against lethal Francisella tularensis (live tularemia vaccine strain) infection by the sera of human recipients of the live tularemia vaccine.Am J Med Sci. 1994; 308: 83-87Crossref PubMed Scopus (63) Google Scholar Most importantly, our data point to cellular correlates of protection predictive of positive vaccine outcomes as early as 24 hours postinfection. Future studies to determine the gene-level responses to human LVS vaccination are underway in our laboratory. We thank Dr G. Ruthel, K. Sellers-Meyers, M. T. Cooper, A. E. Kaczmarek, and N. A. Posten for scientific input and E. Torres-Melendez, R. Zamani, K. J. Hachey, and the USAMRIID Special Immunizations Program for excellent technical assistance. The opinions or assertions contained herein are those of the authors and are not to be construed as official policy or as reflecting the views of the Department of the Army or the Department of Defense." @default.
- W2050505165 created "2016-06-24" @default.
- W2050505165 creator A5011186294 @default.
- W2050505165 creator A5030433958 @default.
- W2050505165 creator A5036513526 @default.
- W2050505165 creator A5054760612 @default.
- W2050505165 creator A5056613943 @default.
- W2050505165 creator A5068707910 @default.
- W2050505165 creator A5089629088 @default.
- W2050505165 date "2006-05-01" @default.
- W2050505165 modified "2023-10-17" @default.
- W2050505165 title "Dominance of human innate immune responses in primary Francisella tularensis live vaccine strain vaccination" @default.
- W2050505165 cites W1777047260 @default.
- W2050505165 cites W1973780687 @default.
- W2050505165 cites W1982883115 @default.
- W2050505165 cites W1993815277 @default.
- W2050505165 cites W2051491651 @default.
- W2050505165 cites W2087785895 @default.
- W2050505165 cites W2148041733 @default.
- W2050505165 cites W2167960824 @default.
- W2050505165 cites W2414226470 @default.
- W2050505165 cites W4300892702 @default.
- W2050505165 doi "https://doi.org/10.1016/j.jaci.2006.01.044" @default.
- W2050505165 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/16675351" @default.
- W2050505165 hasPublicationYear "2006" @default.
- W2050505165 type Work @default.
- W2050505165 sameAs 2050505165 @default.
- W2050505165 citedByCount "15" @default.
- W2050505165 countsByYear W20505051652012 @default.
- W2050505165 countsByYear W20505051652013 @default.
- W2050505165 countsByYear W20505051652014 @default.
- W2050505165 countsByYear W20505051652019 @default.
- W2050505165 countsByYear W20505051652021 @default.
- W2050505165 crossrefType "journal-article" @default.
- W2050505165 hasAuthorship W2050505165A5011186294 @default.
- W2050505165 hasAuthorship W2050505165A5030433958 @default.
- W2050505165 hasAuthorship W2050505165A5036513526 @default.
- W2050505165 hasAuthorship W2050505165A5054760612 @default.
- W2050505165 hasAuthorship W2050505165A5056613943 @default.
- W2050505165 hasAuthorship W2050505165A5068707910 @default.
- W2050505165 hasAuthorship W2050505165A5089629088 @default.
- W2050505165 hasBestOaLocation W20505051651 @default.
- W2050505165 hasConcept C104317684 @default.
- W2050505165 hasConcept C136449434 @default.
- W2050505165 hasConcept C159047783 @default.
- W2050505165 hasConcept C203014093 @default.
- W2050505165 hasConcept C22070199 @default.
- W2050505165 hasConcept C2780467176 @default.
- W2050505165 hasConcept C54355233 @default.
- W2050505165 hasConcept C54602769 @default.
- W2050505165 hasConcept C60987743 @default.
- W2050505165 hasConcept C86803240 @default.
- W2050505165 hasConcept C8891405 @default.
- W2050505165 hasConcept C89423630 @default.
- W2050505165 hasConceptScore W2050505165C104317684 @default.
- W2050505165 hasConceptScore W2050505165C136449434 @default.
- W2050505165 hasConceptScore W2050505165C159047783 @default.
- W2050505165 hasConceptScore W2050505165C203014093 @default.
- W2050505165 hasConceptScore W2050505165C22070199 @default.
- W2050505165 hasConceptScore W2050505165C2780467176 @default.
- W2050505165 hasConceptScore W2050505165C54355233 @default.
- W2050505165 hasConceptScore W2050505165C54602769 @default.
- W2050505165 hasConceptScore W2050505165C60987743 @default.
- W2050505165 hasConceptScore W2050505165C86803240 @default.
- W2050505165 hasConceptScore W2050505165C8891405 @default.
- W2050505165 hasConceptScore W2050505165C89423630 @default.
- W2050505165 hasIssue "5" @default.
- W2050505165 hasLocation W20505051651 @default.
- W2050505165 hasLocation W20505051652 @default.
- W2050505165 hasOpenAccess W2050505165 @default.
- W2050505165 hasPrimaryLocation W20505051651 @default.
- W2050505165 hasRelatedWork W1556307916 @default.
- W2050505165 hasRelatedWork W1974101068 @default.
- W2050505165 hasRelatedWork W2019574320 @default.
- W2050505165 hasRelatedWork W2081700001 @default.
- W2050505165 hasRelatedWork W2087785895 @default.
- W2050505165 hasRelatedWork W2103515427 @default.
- W2050505165 hasRelatedWork W2141330728 @default.
- W2050505165 hasRelatedWork W2208549353 @default.
- W2050505165 hasRelatedWork W2478717189 @default.
- W2050505165 hasRelatedWork W4221063257 @default.
- W2050505165 hasVolume "117" @default.
- W2050505165 isParatext "false" @default.
- W2050505165 isRetracted "false" @default.
- W2050505165 magId "2050505165" @default.
- W2050505165 workType "article" @default.