Matches in SemOpenAlex for { <https://semopenalex.org/work/W2050529306> ?p ?o ?g. }
- W2050529306 endingPage "112" @default.
- W2050529306 startingPage "91" @default.
- W2050529306 abstract "Groundwater contamination by arsenic in Vietnam poses a serious health threat to millions of people. In the larger Hanoi area, elevated arsenic levels are present in both, the Holocene and Pleistocene aquifers. Family-based tubewells predominantly tap the Holocene aquifer, while the Hanoi water works extract more than 600,000 m3/day of groundwater from the Pleistocene aquifer. Detailed groundwater and sediment investigations were conducted at three locations exhibiting distinct geochemical conditions, i.e., i) high levels of dissolved arsenic (av. 121 µg/L) at the river bank, ii) low levels of dissolved arsenic (av. 21 µg/L) at the river bank and, iii) medium levels of dissolved arsenic (60 µg/L) in an area of buried peat and excessive groundwater abstraction. Seasonal fluctuations in water chemistry were studied over a time span of 14 months. Sediment-bound arsenic (1.3–22 µg/g) is in a natural range. Arsenic correlates with iron (r2 > 0.8) with variation related to grain size. Sediment leaching experiments showed that arsenic can readily be mobilized at each of the three locations. Low levels of arsenic in groundwater (< 10 µg/L) generally exhibit manganese reducing conditions, whereas elevated levels are caused by reductive dissolution under iron- and sulphate reducing conditions. Average arsenic concentrations in groundwater are twofold higher at the river bank than in the peat area. The lower levels of arsenic contamination in the peat area are likely controlled by the high abundance of iron present in both the aqueous and sediment phases. With median molar Fe/As ratios of 350 in water and 8700 in the sediments of the peat area, reduced iron possibly forms new mineral phases that resorb (or sequester) previously released arsenic to the sediment. Despite similar redox conditions, resorption is much less significant at the river bank (Fe/As(aq) = 68, Fe/As(s) = 4700), and hence, arsenic concentrations in groundwater reach considerably higher levels. Drawdown of Holocene water to the Pleistocene aquifer in the peat area, caused by the pumping for the Hanoi water works, clearly promotes reducing conditions in Pleistocene groundwater. This demonstrates that excessive abstraction of water from deep wells, i.e., wells tapping water below the arsenic burdened depth, can cause a downward shift of iron-reducing conditions and concurrently mobilize arsenic along the way. Vertical migration of reduced groundwater may also impact aquifers under natural hydrological conditions. Seepage of DOC-enriched groundwater derived from degradation of organic matter in the clayey sediments at the river bank was observed to enhance (and maintain) iron-reducing conditions in the aquifer where organic matter is scarce. Once the aquifer becomes reduced, arsenic is released from the aquifer solid-hosts but additionally derives from the arsenic-enriched groundwater seeping from the clay into the aquifer. This behaviour is an important mechanism for arsenic contamination in aquifers that might not necessarily contain enough organic matter in their sediments to induce reducing conditions independently." @default.
- W2050529306 created "2016-06-24" @default.
- W2050529306 creator A5022688035 @default.
- W2050529306 creator A5027342826 @default.
- W2050529306 creator A5028176348 @default.
- W2050529306 creator A5049024756 @default.
- W2050529306 creator A5057617939 @default.
- W2050529306 creator A5069589030 @default.
- W2050529306 creator A5084671242 @default.
- W2050529306 creator A5084914829 @default.
- W2050529306 date "2008-03-01" @default.
- W2050529306 modified "2023-10-16" @default.
- W2050529306 title "Hydrological and sedimentary controls leading to arsenic contamination of groundwater in the Hanoi area, Vietnam: The impact of iron-arsenic ratios, peat, river bank deposits, and excessive groundwater abstraction" @default.
- W2050529306 cites W1898875569 @default.
- W2050529306 cites W1966325683 @default.
- W2050529306 cites W1967306518 @default.
- W2050529306 cites W1978895830 @default.
- W2050529306 cites W1980886501 @default.
- W2050529306 cites W1982222157 @default.
- W2050529306 cites W1982755393 @default.
- W2050529306 cites W2003221509 @default.
- W2050529306 cites W2017346535 @default.
- W2050529306 cites W2025896539 @default.
- W2050529306 cites W2033746983 @default.
- W2050529306 cites W2036396275 @default.
- W2050529306 cites W2045712334 @default.
- W2050529306 cites W2049114126 @default.
- W2050529306 cites W2054297645 @default.
- W2050529306 cites W2056248221 @default.
- W2050529306 cites W2058320132 @default.
- W2050529306 cites W2059948845 @default.
- W2050529306 cites W2062387535 @default.
- W2050529306 cites W2072826534 @default.
- W2050529306 cites W2075696694 @default.
- W2050529306 cites W2077395812 @default.
- W2050529306 cites W2079598225 @default.
- W2050529306 cites W2081756067 @default.
- W2050529306 cites W2090349830 @default.
- W2050529306 cites W2094156606 @default.
- W2050529306 cites W2104843444 @default.
- W2050529306 cites W2107059050 @default.
- W2050529306 cites W2116105765 @default.
- W2050529306 cites W2122591311 @default.
- W2050529306 cites W2128742645 @default.
- W2050529306 cites W2128753028 @default.
- W2050529306 cites W2132895747 @default.
- W2050529306 cites W2136315576 @default.
- W2050529306 cites W2142169267 @default.
- W2050529306 cites W2145670353 @default.
- W2050529306 cites W2147394946 @default.
- W2050529306 cites W2149602337 @default.
- W2050529306 cites W2151344433 @default.
- W2050529306 cites W2167437752 @default.
- W2050529306 cites W2168121572 @default.
- W2050529306 cites W4230547244 @default.
- W2050529306 cites W4234891782 @default.
- W2050529306 doi "https://doi.org/10.1016/j.chemgeo.2007.12.007" @default.
- W2050529306 hasPublicationYear "2008" @default.
- W2050529306 type Work @default.
- W2050529306 sameAs 2050529306 @default.
- W2050529306 citedByCount "225" @default.
- W2050529306 countsByYear W20505293062012 @default.
- W2050529306 countsByYear W20505293062013 @default.
- W2050529306 countsByYear W20505293062014 @default.
- W2050529306 countsByYear W20505293062015 @default.
- W2050529306 countsByYear W20505293062016 @default.
- W2050529306 countsByYear W20505293062017 @default.
- W2050529306 countsByYear W20505293062018 @default.
- W2050529306 countsByYear W20505293062019 @default.
- W2050529306 countsByYear W20505293062020 @default.
- W2050529306 countsByYear W20505293062021 @default.
- W2050529306 countsByYear W20505293062022 @default.
- W2050529306 countsByYear W20505293062023 @default.
- W2050529306 crossrefType "journal-article" @default.
- W2050529306 hasAuthorship W2050529306A5022688035 @default.
- W2050529306 hasAuthorship W2050529306A5027342826 @default.
- W2050529306 hasAuthorship W2050529306A5028176348 @default.
- W2050529306 hasAuthorship W2050529306A5049024756 @default.
- W2050529306 hasAuthorship W2050529306A5057617939 @default.
- W2050529306 hasAuthorship W2050529306A5069589030 @default.
- W2050529306 hasAuthorship W2050529306A5084671242 @default.
- W2050529306 hasAuthorship W2050529306A5084914829 @default.
- W2050529306 hasBestOaLocation W20505293062 @default.
- W2050529306 hasConcept C107872376 @default.
- W2050529306 hasConcept C114793014 @default.
- W2050529306 hasConcept C127313418 @default.
- W2050529306 hasConcept C132165134 @default.
- W2050529306 hasConcept C159390177 @default.
- W2050529306 hasConcept C159750122 @default.
- W2050529306 hasConcept C17409809 @default.
- W2050529306 hasConcept C178790620 @default.
- W2050529306 hasConcept C185592680 @default.
- W2050529306 hasConcept C187320778 @default.
- W2050529306 hasConcept C18903297 @default.
- W2050529306 hasConcept C2816523 @default.
- W2050529306 hasConcept C39432304 @default.
- W2050529306 hasConcept C502230775 @default.
- W2050529306 hasConcept C53657456 @default.