Matches in SemOpenAlex for { <https://semopenalex.org/work/W2050565587> ?p ?o ?g. }
- W2050565587 endingPage "6384" @default.
- W2050565587 startingPage "6367" @default.
- W2050565587 abstract "As a prototypical dispersion-dominated physisorption problem, we analyze here the performance of dispersionless and dispersion-accounting methodologies on the helium interaction with cluster models of the TiO2(110) surface. A special focus has been given to the dispersionless density functional dlDF and the dlDF+Das construction for the total interaction energy (K. Pernal, R. Podeswa, K. Patkowski, and K. Szalewicz, Phys. Rev. Lett. 2009, 109, 263201), where Das is an effective interatomic pairwise functional form for the dispersion. Likewise, the performance of symmetry-adapted perturbation theory (SAPT) method is evaluated, where the interacting monomers are described by density functional theory (DFT) with the dlDF, PBE, and PBE0 functionals. Our benchmarks include CCSD(T)-F12b calculations and comparative analysis on the nuclear bound states supported by the He–cluster potentials. Moreover, intra- and intermonomer correlation contributions to the physisorption interaction are analyzed through the method of increments (H. Stoll, J. Chem. Phys. 1992, 97, 8449) at the CCSD(T) level of theory. This method is further applied in conjunction with a partitioning of the Hartree–Fock interaction energy to estimate individual interaction energy components, comparing them with those obtained using the different SAPT(DFT) approaches. The cluster size evolution of dispersionless and dispersion-accounting energy components is then discussed, revealing the reduced role of the dispersionless interaction and intramonomer correlation when the extended nature of the surface is better accounted for. On the contrary, both post-Hartree–Fock and SAPT(DFT) results clearly demonstrate the high-transferability character of the effective pairwise dispersion interaction whatever the cluster model is. Our contribution also illustrates how the method of increments can be used as a valuable tool not only to achieve the accuracy of CCSD(T) calculations using large cluster models but also to evaluate the performance of SAPT(DFT) methods for the physically well-defined contributions to the total interaction energy. Overall, our work indicates the excellent performance of a dlDF+Das approach in which the parameters are optimized using the smallest cluster model of the target surface to treat van der Waals adsorbate–surface interactions." @default.
- W2050565587 created "2016-06-24" @default.
- W2050565587 creator A5011650111 @default.
- W2050565587 creator A5027573012 @default.
- W2050565587 creator A5091711907 @default.
- W2050565587 date "2014-02-28" @default.
- W2050565587 modified "2023-10-18" @default.
- W2050565587 title "Assessing the Performance of Dispersionless and Dispersion-Accounting Methods: Helium Interaction with Cluster Models of the TiO<sub>2</sub>(110) Surface" @default.
- W2050565587 cites W1629156576 @default.
- W2050565587 cites W1965318351 @default.
- W2050565587 cites W1966501836 @default.
- W2050565587 cites W1971063822 @default.
- W2050565587 cites W1973059115 @default.
- W2050565587 cites W1973208976 @default.
- W2050565587 cites W1973333112 @default.
- W2050565587 cites W1974570397 @default.
- W2050565587 cites W1980285708 @default.
- W2050565587 cites W1980299655 @default.
- W2050565587 cites W1981313871 @default.
- W2050565587 cites W1981368803 @default.
- W2050565587 cites W1986252415 @default.
- W2050565587 cites W1987520312 @default.
- W2050565587 cites W1989239156 @default.
- W2050565587 cites W1993397673 @default.
- W2050565587 cites W1998970054 @default.
- W2050565587 cites W2000193505 @default.
- W2050565587 cites W2000721193 @default.
- W2050565587 cites W2002782616 @default.
- W2050565587 cites W2003193361 @default.
- W2050565587 cites W2003825227 @default.
- W2050565587 cites W2005234587 @default.
- W2050565587 cites W2005857575 @default.
- W2050565587 cites W2006620845 @default.
- W2050565587 cites W2007336434 @default.
- W2050565587 cites W2008423326 @default.
- W2050565587 cites W2014597867 @default.
- W2050565587 cites W2015115007 @default.
- W2050565587 cites W2021969858 @default.
- W2050565587 cites W2027572036 @default.
- W2050565587 cites W2027955264 @default.
- W2050565587 cites W2028558699 @default.
- W2050565587 cites W2029839832 @default.
- W2050565587 cites W2032214531 @default.
- W2050565587 cites W2037210960 @default.
- W2050565587 cites W2041065167 @default.
- W2050565587 cites W2044591029 @default.
- W2050565587 cites W2045649029 @default.
- W2050565587 cites W2046634321 @default.
- W2050565587 cites W2047524879 @default.
- W2050565587 cites W2049032211 @default.
- W2050565587 cites W2049743780 @default.
- W2050565587 cites W2050480585 @default.
- W2050565587 cites W2050890227 @default.
- W2050565587 cites W2051891162 @default.
- W2050565587 cites W2057175731 @default.
- W2050565587 cites W2058467910 @default.
- W2050565587 cites W2059571429 @default.
- W2050565587 cites W2061309794 @default.
- W2050565587 cites W2061686925 @default.
- W2050565587 cites W2062995258 @default.
- W2050565587 cites W2063832148 @default.
- W2050565587 cites W2064798852 @default.
- W2050565587 cites W2066399486 @default.
- W2050565587 cites W2067725165 @default.
- W2050565587 cites W2071844305 @default.
- W2050565587 cites W2072238126 @default.
- W2050565587 cites W2078226533 @default.
- W2050565587 cites W2079486966 @default.
- W2050565587 cites W2079688533 @default.
- W2050565587 cites W2079699471 @default.
- W2050565587 cites W2080564527 @default.
- W2050565587 cites W2083004705 @default.
- W2050565587 cites W2083222334 @default.
- W2050565587 cites W2087141492 @default.
- W2050565587 cites W2091610243 @default.
- W2050565587 cites W2092157292 @default.
- W2050565587 cites W2098329985 @default.
- W2050565587 cites W2110075377 @default.
- W2050565587 cites W2112091039 @default.
- W2050565587 cites W2113060088 @default.
- W2050565587 cites W2130918438 @default.
- W2050565587 cites W2138205345 @default.
- W2050565587 cites W2142607364 @default.
- W2050565587 cites W2148941593 @default.
- W2050565587 cites W2151798372 @default.
- W2050565587 cites W2159776624 @default.
- W2050565587 cites W2165049467 @default.
- W2050565587 cites W2171445884 @default.
- W2050565587 cites W2313988742 @default.
- W2050565587 cites W2315584695 @default.
- W2050565587 cites W2318015281 @default.
- W2050565587 cites W2322435364 @default.
- W2050565587 cites W2331097618 @default.
- W2050565587 cites W3102163227 @default.
- W2050565587 cites W4241456496 @default.
- W2050565587 cites W73583073 @default.
- W2050565587 doi "https://doi.org/10.1021/jp412765t" @default.
- W2050565587 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24520826" @default.