Matches in SemOpenAlex for { <https://semopenalex.org/work/W2050574890> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2050574890 abstract "A new method for selection of appropriate training areas which are used for supervised texture classification is proposed. In the method, the genetic algorithms (GA) are employed to determine the appropriate location and the appropriate size of each texture category's training area. The proposed method consists of the following procedures: 1) the determination of the number of classification category and those kinds; 2) each chromosome used in the GA consists of coordinates of center pixel of each training area candidate and those size; 3) 50 chromosomes are generated using random number; 4) fitness of each chromosome is calculated; the fitness is the product of the Classification Reliability in the Mixed Texture Cases (CRMTC) and the Stability of NZMV against Scanning Field of View Size (SNSFS); 5) in the selection operation in the GA, the elite preservation strategy is employed; 6) in the crossover operation, multi point crossover is employed and two parent chromosomes are selected by the roulette strategy; 7) in mutation operation, the locuses where the bit inverting occurs are decided by a mutation rate; 8) go to the procedure 4. Some experiments are conducted to evaluate searching capability of appropriate training areas of the proposed method by using images from Brodatz's photo album and their rotated images. The experimental results show that the proposed method can select appropriate training areas much faster than conventional try-and-error method. The proposed method has been also applied to supervised texture classification of airborne multispectral scanner images. The experimental results show that the proposed method can provide appropriate training areas for reasonable classification results." @default.
- W2050574890 created "2016-06-24" @default.
- W2050574890 creator A5065692230 @default.
- W2050574890 creator A5078459918 @default.
- W2050574890 creator A5087669470 @default.
- W2050574890 date "2003-03-13" @default.
- W2050574890 modified "2023-09-23" @default.
- W2050574890 title "<title>Appropriate training area selection for supervised texture classification by using the genetic algorithms</title>" @default.
- W2050574890 doi "https://doi.org/10.1117/12.463148" @default.
- W2050574890 hasPublicationYear "2003" @default.
- W2050574890 type Work @default.
- W2050574890 sameAs 2050574890 @default.
- W2050574890 citedByCount "1" @default.
- W2050574890 crossrefType "proceedings-article" @default.
- W2050574890 hasAuthorship W2050574890A5065692230 @default.
- W2050574890 hasAuthorship W2050574890A5078459918 @default.
- W2050574890 hasAuthorship W2050574890A5087669470 @default.
- W2050574890 hasConcept C104317684 @default.
- W2050574890 hasConcept C115961682 @default.
- W2050574890 hasConcept C119857082 @default.
- W2050574890 hasConcept C122507166 @default.
- W2050574890 hasConcept C153180895 @default.
- W2050574890 hasConcept C154945302 @default.
- W2050574890 hasConcept C160633673 @default.
- W2050574890 hasConcept C165661538 @default.
- W2050574890 hasConcept C176066374 @default.
- W2050574890 hasConcept C185592680 @default.
- W2050574890 hasConcept C202444582 @default.
- W2050574890 hasConcept C2524010 @default.
- W2050574890 hasConcept C28719098 @default.
- W2050574890 hasConcept C30481170 @default.
- W2050574890 hasConcept C33923547 @default.
- W2050574890 hasConcept C41008148 @default.
- W2050574890 hasConcept C55493867 @default.
- W2050574890 hasConcept C75294576 @default.
- W2050574890 hasConcept C81917197 @default.
- W2050574890 hasConcept C8880873 @default.
- W2050574890 hasConcept C9652623 @default.
- W2050574890 hasConcept C99701942 @default.
- W2050574890 hasConceptScore W2050574890C104317684 @default.
- W2050574890 hasConceptScore W2050574890C115961682 @default.
- W2050574890 hasConceptScore W2050574890C119857082 @default.
- W2050574890 hasConceptScore W2050574890C122507166 @default.
- W2050574890 hasConceptScore W2050574890C153180895 @default.
- W2050574890 hasConceptScore W2050574890C154945302 @default.
- W2050574890 hasConceptScore W2050574890C160633673 @default.
- W2050574890 hasConceptScore W2050574890C165661538 @default.
- W2050574890 hasConceptScore W2050574890C176066374 @default.
- W2050574890 hasConceptScore W2050574890C185592680 @default.
- W2050574890 hasConceptScore W2050574890C202444582 @default.
- W2050574890 hasConceptScore W2050574890C2524010 @default.
- W2050574890 hasConceptScore W2050574890C28719098 @default.
- W2050574890 hasConceptScore W2050574890C30481170 @default.
- W2050574890 hasConceptScore W2050574890C33923547 @default.
- W2050574890 hasConceptScore W2050574890C41008148 @default.
- W2050574890 hasConceptScore W2050574890C55493867 @default.
- W2050574890 hasConceptScore W2050574890C75294576 @default.
- W2050574890 hasConceptScore W2050574890C81917197 @default.
- W2050574890 hasConceptScore W2050574890C8880873 @default.
- W2050574890 hasConceptScore W2050574890C9652623 @default.
- W2050574890 hasConceptScore W2050574890C99701942 @default.
- W2050574890 hasLocation W20505748901 @default.
- W2050574890 hasOpenAccess W2050574890 @default.
- W2050574890 hasPrimaryLocation W20505748901 @default.
- W2050574890 hasRelatedWork W1579044123 @default.
- W2050574890 hasRelatedWork W2033570426 @default.
- W2050574890 hasRelatedWork W2036882750 @default.
- W2050574890 hasRelatedWork W2126515378 @default.
- W2050574890 hasRelatedWork W2137407971 @default.
- W2050574890 hasRelatedWork W2355977368 @default.
- W2050574890 hasRelatedWork W24635804 @default.
- W2050574890 hasRelatedWork W2871696631 @default.
- W2050574890 hasRelatedWork W2938727909 @default.
- W2050574890 hasRelatedWork W3040212610 @default.
- W2050574890 isParatext "false" @default.
- W2050574890 isRetracted "false" @default.
- W2050574890 magId "2050574890" @default.
- W2050574890 workType "article" @default.