Matches in SemOpenAlex for { <https://semopenalex.org/work/W2050675382> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2050675382 endingPage "2450" @default.
- W2050675382 startingPage "2439" @default.
- W2050675382 abstract "In this study, fuzzy approach with fault-tolerance has proposed to fuse heterogeneous sensed data and overcome the problem of imprecise collision warning due to perturbed input signal when processing the pre-crash warning. Meanwhile, another problem relevant to the danger in drowsy driving, involving fatigue level, carbon monoxide concentration, and breath alcohol concentration, was considered and has approximately reasoned to an extra reaction time to modify NHTSA algorithm. A vision-sensing analysis cooperating with global-positioning system is applied for lane marking detection and collision warning, particularly exchanging the dynamic and static information between neighboring cars via inter-vehicle wireless communications. In addition to pre-crash warning, event data recording very useful for accident reconstruction on scene is also established here. In order to speed up data fusion on both quantum-tuned back-propagation neural network (QT-BPNN) and adaptive network-based fuzzy inference system (ANFIS), a distributed dual-platform DaVinci+XScale_NAV270 has been employed. Several tests on system’s reliability and validity have been done successfully, and the comparison of system effectiveness showed that our proposed approach outperforms two current well-known collision-warning systems (AWS-Mobileye and ACWS-Delphi)." @default.
- W2050675382 created "2016-06-24" @default.
- W2050675382 creator A5031525579 @default.
- W2050675382 creator A5038130393 @default.
- W2050675382 creator A5074469195 @default.
- W2050675382 date "2010-03-15" @default.
- W2050675382 modified "2023-10-18" @default.
- W2050675382 title "Intelligent data fusion system for predicting vehicle collision warning using vision/GPS sensing" @default.
- W2050675382 cites W1537874494 @default.
- W2050675382 cites W1550580815 @default.
- W2050675382 cites W1580786848 @default.
- W2050675382 cites W1683677098 @default.
- W2050675382 cites W1908543221 @default.
- W2050675382 cites W1944803505 @default.
- W2050675382 cites W1993895500 @default.
- W2050675382 cites W2019207321 @default.
- W2050675382 cites W2084652510 @default.
- W2050675382 cites W2115706862 @default.
- W2050675382 cites W2121379263 @default.
- W2050675382 cites W2122723498 @default.
- W2050675382 cites W2123422245 @default.
- W2050675382 cites W2125643757 @default.
- W2050675382 cites W2144357069 @default.
- W2050675382 cites W2151904968 @default.
- W2050675382 cites W2153887174 @default.
- W2050675382 cites W2154883150 @default.
- W2050675382 cites W2155164781 @default.
- W2050675382 cites W2160660078 @default.
- W2050675382 cites W2171167960 @default.
- W2050675382 cites W2189086649 @default.
- W2050675382 doi "https://doi.org/10.1016/j.eswa.2009.07.036" @default.
- W2050675382 hasPublicationYear "2010" @default.
- W2050675382 type Work @default.
- W2050675382 sameAs 2050675382 @default.
- W2050675382 citedByCount "66" @default.
- W2050675382 countsByYear W20506753822012 @default.
- W2050675382 countsByYear W20506753822013 @default.
- W2050675382 countsByYear W20506753822014 @default.
- W2050675382 countsByYear W20506753822015 @default.
- W2050675382 countsByYear W20506753822016 @default.
- W2050675382 countsByYear W20506753822017 @default.
- W2050675382 countsByYear W20506753822018 @default.
- W2050675382 countsByYear W20506753822019 @default.
- W2050675382 countsByYear W20506753822020 @default.
- W2050675382 countsByYear W20506753822021 @default.
- W2050675382 countsByYear W20506753822022 @default.
- W2050675382 countsByYear W20506753822023 @default.
- W2050675382 crossrefType "journal-article" @default.
- W2050675382 hasAuthorship W2050675382A5031525579 @default.
- W2050675382 hasAuthorship W2050675382A5038130393 @default.
- W2050675382 hasAuthorship W2050675382A5074469195 @default.
- W2050675382 hasConcept C121704057 @default.
- W2050675382 hasConcept C154945302 @default.
- W2050675382 hasConcept C186108316 @default.
- W2050675382 hasConcept C195975749 @default.
- W2050675382 hasConcept C33954974 @default.
- W2050675382 hasConcept C38652104 @default.
- W2050675382 hasConcept C41008148 @default.
- W2050675382 hasConcept C58166 @default.
- W2050675382 hasConcept C60229501 @default.
- W2050675382 hasConcept C76155785 @default.
- W2050675382 hasConcept C79403827 @default.
- W2050675382 hasConceptScore W2050675382C121704057 @default.
- W2050675382 hasConceptScore W2050675382C154945302 @default.
- W2050675382 hasConceptScore W2050675382C186108316 @default.
- W2050675382 hasConceptScore W2050675382C195975749 @default.
- W2050675382 hasConceptScore W2050675382C33954974 @default.
- W2050675382 hasConceptScore W2050675382C38652104 @default.
- W2050675382 hasConceptScore W2050675382C41008148 @default.
- W2050675382 hasConceptScore W2050675382C58166 @default.
- W2050675382 hasConceptScore W2050675382C60229501 @default.
- W2050675382 hasConceptScore W2050675382C76155785 @default.
- W2050675382 hasConceptScore W2050675382C79403827 @default.
- W2050675382 hasIssue "3" @default.
- W2050675382 hasLocation W20506753821 @default.
- W2050675382 hasOpenAccess W2050675382 @default.
- W2050675382 hasPrimaryLocation W20506753821 @default.
- W2050675382 hasRelatedWork W1529761805 @default.
- W2050675382 hasRelatedWork W1671566079 @default.
- W2050675382 hasRelatedWork W2007514163 @default.
- W2050675382 hasRelatedWork W2145375532 @default.
- W2050675382 hasRelatedWork W2157431227 @default.
- W2050675382 hasRelatedWork W2564890757 @default.
- W2050675382 hasRelatedWork W2893889765 @default.
- W2050675382 hasRelatedWork W2974406378 @default.
- W2050675382 hasRelatedWork W2984785113 @default.
- W2050675382 hasRelatedWork W653682969 @default.
- W2050675382 hasVolume "37" @default.
- W2050675382 isParatext "false" @default.
- W2050675382 isRetracted "false" @default.
- W2050675382 magId "2050675382" @default.
- W2050675382 workType "article" @default.