Matches in SemOpenAlex for { <https://semopenalex.org/work/W2050704781> ?p ?o ?g. }
- W2050704781 endingPage "920" @default.
- W2050704781 startingPage "904" @default.
- W2050704781 abstract "Kernel principal component analysis (KPCA) and kernel linear discriminant analysis (KLDA) are two commonly used and effective methods for dimensionality reduction and feature extraction. In this paper, we propose a KLDA method based on maximal class separability for extracting the optimal features of analog fault data sets, where the proposed KLDA method is compared with principal component analysis (PCA), linear discriminant analysis (LDA) and KPCA methods. Meanwhile, a novel particle swarm optimization (PSO) based algorithm is developed to tune parameters and structures of neural networks jointly. Our study shows that KLDA is overall superior to PCA, LDA and KPCA in feature extraction performance and the proposed PSO-based algorithm has the properties of convenience of implementation and better training performance than Back-propagation algorithm. The simulation results demonstrate the effectiveness of these methods." @default.
- W2050704781 created "2016-06-24" @default.
- W2050704781 creator A5060317661 @default.
- W2050704781 creator A5079456274 @default.
- W2050704781 date "2012-02-01" @default.
- W2050704781 modified "2023-09-23" @default.
- W2050704781 title "A novel neural-network approach of analog fault diagnosis based on kernel discriminant analysis and particle swarm optimization" @default.
- W2050704781 cites W1964965599 @default.
- W2050704781 cites W1966655850 @default.
- W2050704781 cites W1967629964 @default.
- W2050704781 cites W1969693267 @default.
- W2050704781 cites W1980501707 @default.
- W2050704781 cites W1985773453 @default.
- W2050704781 cites W1986834168 @default.
- W2050704781 cites W1998857771 @default.
- W2050704781 cites W2000538148 @default.
- W2050704781 cites W2001003881 @default.
- W2050704781 cites W2003443969 @default.
- W2050704781 cites W2015304908 @default.
- W2050704781 cites W2021309800 @default.
- W2050704781 cites W2035530690 @default.
- W2050704781 cites W2041657594 @default.
- W2050704781 cites W2046357518 @default.
- W2050704781 cites W2051680981 @default.
- W2050704781 cites W2056003151 @default.
- W2050704781 cites W2058044852 @default.
- W2050704781 cites W2077913352 @default.
- W2050704781 cites W2083520984 @default.
- W2050704781 cites W2086068525 @default.
- W2050704781 cites W2088032561 @default.
- W2050704781 cites W2088576840 @default.
- W2050704781 cites W2089245023 @default.
- W2050704781 cites W2090446526 @default.
- W2050704781 cites W2099383324 @default.
- W2050704781 cites W2101550795 @default.
- W2050704781 cites W2108710077 @default.
- W2050704781 cites W2108921639 @default.
- W2050704781 cites W2108995755 @default.
- W2050704781 cites W2112312998 @default.
- W2050704781 cites W2113423548 @default.
- W2050704781 cites W2121821621 @default.
- W2050704781 cites W2124290836 @default.
- W2050704781 cites W2140095548 @default.
- W2050704781 cites W2143304877 @default.
- W2050704781 cites W2146820706 @default.
- W2050704781 cites W2152446064 @default.
- W2050704781 cites W2152967416 @default.
- W2050704781 cites W2158572650 @default.
- W2050704781 cites W2164071167 @default.
- W2050704781 cites W2166107799 @default.
- W2050704781 doi "https://doi.org/10.1016/j.asoc.2011.10.002" @default.
- W2050704781 hasPublicationYear "2012" @default.
- W2050704781 type Work @default.
- W2050704781 sameAs 2050704781 @default.
- W2050704781 citedByCount "37" @default.
- W2050704781 countsByYear W20507047812012 @default.
- W2050704781 countsByYear W20507047812013 @default.
- W2050704781 countsByYear W20507047812014 @default.
- W2050704781 countsByYear W20507047812015 @default.
- W2050704781 countsByYear W20507047812016 @default.
- W2050704781 countsByYear W20507047812017 @default.
- W2050704781 countsByYear W20507047812018 @default.
- W2050704781 countsByYear W20507047812020 @default.
- W2050704781 countsByYear W20507047812021 @default.
- W2050704781 countsByYear W20507047812022 @default.
- W2050704781 crossrefType "journal-article" @default.
- W2050704781 hasAuthorship W2050704781A5060317661 @default.
- W2050704781 hasAuthorship W2050704781A5079456274 @default.
- W2050704781 hasConcept C111030470 @default.
- W2050704781 hasConcept C11413529 @default.
- W2050704781 hasConcept C114614502 @default.
- W2050704781 hasConcept C122280245 @default.
- W2050704781 hasConcept C12267149 @default.
- W2050704781 hasConcept C153180895 @default.
- W2050704781 hasConcept C154945302 @default.
- W2050704781 hasConcept C181367576 @default.
- W2050704781 hasConcept C182335926 @default.
- W2050704781 hasConcept C27438332 @default.
- W2050704781 hasConcept C31510193 @default.
- W2050704781 hasConcept C33923547 @default.
- W2050704781 hasConcept C41008148 @default.
- W2050704781 hasConcept C50644808 @default.
- W2050704781 hasConcept C52622490 @default.
- W2050704781 hasConcept C69738355 @default.
- W2050704781 hasConcept C70518039 @default.
- W2050704781 hasConcept C74193536 @default.
- W2050704781 hasConcept C85617194 @default.
- W2050704781 hasConceptScore W2050704781C111030470 @default.
- W2050704781 hasConceptScore W2050704781C11413529 @default.
- W2050704781 hasConceptScore W2050704781C114614502 @default.
- W2050704781 hasConceptScore W2050704781C122280245 @default.
- W2050704781 hasConceptScore W2050704781C12267149 @default.
- W2050704781 hasConceptScore W2050704781C153180895 @default.
- W2050704781 hasConceptScore W2050704781C154945302 @default.
- W2050704781 hasConceptScore W2050704781C181367576 @default.
- W2050704781 hasConceptScore W2050704781C182335926 @default.
- W2050704781 hasConceptScore W2050704781C27438332 @default.
- W2050704781 hasConceptScore W2050704781C31510193 @default.