Matches in SemOpenAlex for { <https://semopenalex.org/work/W2050762896> ?p ?o ?g. }
- W2050762896 endingPage "132" @default.
- W2050762896 startingPage "119" @default.
- W2050762896 abstract "Information in electronic medical records is often in an unstructured free-text format. This format presents challenges for expedient data retrieval and may fail to convey important findings. Natural language processing (NLP) is an emerging technique for rapid and efficient clinical data retrieval. While proven in disease detection, the utility of NLP in discerning disease progression from free-text reports is untested. We aimed to (1) assess whether unstructured radiology reports contained sufficient information for tumor status classification; (2) develop an NLP-based data extraction tool to determine tumor status from unstructured reports; and (3) compare NLP and human tumor status classification outcomes. Consecutive follow-up brain tumor magnetic resonance imaging reports (2000–2007) from a tertiary center were manually annotated using consensus guidelines on tumor status. Reports were randomized to NLP training (70%) or testing (30%) groups. The NLP tool utilized a support vector machines model with statistical and rule-based outcomes. Most reports had sufficient information for tumor status classification, although 0.8% did not describe status despite reference to prior examinations. Tumor size was unreported in 68.7% of documents, while 50.3% lacked data on change magnitude when there was detectable progression or regression. Using retrospective human classification as the gold standard, NLP achieved 80.6% sensitivity and 91.6% specificity for tumor status determination (mean positive predictive value, 82.4%; negative predictive value, 92.0%). In conclusion, most reports contained sufficient information for tumor status determination, though variable features were used to describe status. NLP demonstrated good accuracy for tumor status classification and may have novel application for automated disease status classification from electronic databases." @default.
- W2050762896 created "2016-06-24" @default.
- W2050762896 creator A5008832314 @default.
- W2050762896 creator A5020310967 @default.
- W2050762896 creator A5087865794 @default.
- W2050762896 creator A5089178032 @default.
- W2050762896 date "2009-05-30" @default.
- W2050762896 modified "2023-10-01" @default.
- W2050762896 title "Discerning Tumor Status from Unstructured MRI Reports—Completeness of Information in Existing Reports and Utility of Automated Natural Language Processing" @default.
- W2050762896 cites W1607624180 @default.
- W2050762896 cites W1939796399 @default.
- W2050762896 cites W1965380368 @default.
- W2050762896 cites W1983058415 @default.
- W2050762896 cites W1986964578 @default.
- W2050762896 cites W1991746030 @default.
- W2050762896 cites W1995687988 @default.
- W2050762896 cites W2012538996 @default.
- W2050762896 cites W2039065459 @default.
- W2050762896 cites W2045538453 @default.
- W2050762896 cites W2057548436 @default.
- W2050762896 cites W2069778477 @default.
- W2050762896 cites W2074911837 @default.
- W2050762896 cites W2110866393 @default.
- W2050762896 cites W2114063639 @default.
- W2050762896 cites W2114388055 @default.
- W2050762896 cites W2133038766 @default.
- W2050762896 cites W2137490534 @default.
- W2050762896 cites W2139248078 @default.
- W2050762896 cites W2149684865 @default.
- W2050762896 cites W2156518033 @default.
- W2050762896 cites W2166213950 @default.
- W2050762896 cites W2167805334 @default.
- W2050762896 cites W2169087999 @default.
- W2050762896 cites W4230370909 @default.
- W2050762896 cites W4248725586 @default.
- W2050762896 cites W79139011 @default.
- W2050762896 doi "https://doi.org/10.1007/s10278-009-9215-7" @default.
- W2050762896 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2837158" @default.
- W2050762896 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/19484309" @default.
- W2050762896 hasPublicationYear "2009" @default.
- W2050762896 type Work @default.
- W2050762896 sameAs 2050762896 @default.
- W2050762896 citedByCount "87" @default.
- W2050762896 countsByYear W20507628962012 @default.
- W2050762896 countsByYear W20507628962013 @default.
- W2050762896 countsByYear W20507628962014 @default.
- W2050762896 countsByYear W20507628962015 @default.
- W2050762896 countsByYear W20507628962016 @default.
- W2050762896 countsByYear W20507628962017 @default.
- W2050762896 countsByYear W20507628962018 @default.
- W2050762896 countsByYear W20507628962019 @default.
- W2050762896 countsByYear W20507628962020 @default.
- W2050762896 countsByYear W20507628962021 @default.
- W2050762896 countsByYear W20507628962022 @default.
- W2050762896 countsByYear W20507628962023 @default.
- W2050762896 crossrefType "journal-article" @default.
- W2050762896 hasAuthorship W2050762896A5008832314 @default.
- W2050762896 hasAuthorship W2050762896A5020310967 @default.
- W2050762896 hasAuthorship W2050762896A5087865794 @default.
- W2050762896 hasAuthorship W2050762896A5089178032 @default.
- W2050762896 hasBestOaLocation W20507628961 @default.
- W2050762896 hasConcept C119857082 @default.
- W2050762896 hasConcept C12267149 @default.
- W2050762896 hasConcept C124101348 @default.
- W2050762896 hasConcept C126838900 @default.
- W2050762896 hasConcept C142724271 @default.
- W2050762896 hasConcept C154945302 @default.
- W2050762896 hasConcept C169258074 @default.
- W2050762896 hasConcept C195807954 @default.
- W2050762896 hasConcept C204321447 @default.
- W2050762896 hasConcept C23123220 @default.
- W2050762896 hasConcept C2779130545 @default.
- W2050762896 hasConcept C2781252014 @default.
- W2050762896 hasConcept C40993552 @default.
- W2050762896 hasConcept C41008148 @default.
- W2050762896 hasConcept C71472368 @default.
- W2050762896 hasConcept C71924100 @default.
- W2050762896 hasConcept C75684735 @default.
- W2050762896 hasConceptScore W2050762896C119857082 @default.
- W2050762896 hasConceptScore W2050762896C12267149 @default.
- W2050762896 hasConceptScore W2050762896C124101348 @default.
- W2050762896 hasConceptScore W2050762896C126838900 @default.
- W2050762896 hasConceptScore W2050762896C142724271 @default.
- W2050762896 hasConceptScore W2050762896C154945302 @default.
- W2050762896 hasConceptScore W2050762896C169258074 @default.
- W2050762896 hasConceptScore W2050762896C195807954 @default.
- W2050762896 hasConceptScore W2050762896C204321447 @default.
- W2050762896 hasConceptScore W2050762896C23123220 @default.
- W2050762896 hasConceptScore W2050762896C2779130545 @default.
- W2050762896 hasConceptScore W2050762896C2781252014 @default.
- W2050762896 hasConceptScore W2050762896C40993552 @default.
- W2050762896 hasConceptScore W2050762896C41008148 @default.
- W2050762896 hasConceptScore W2050762896C71472368 @default.
- W2050762896 hasConceptScore W2050762896C71924100 @default.
- W2050762896 hasConceptScore W2050762896C75684735 @default.
- W2050762896 hasIssue "2" @default.
- W2050762896 hasLocation W20507628961 @default.
- W2050762896 hasLocation W20507628962 @default.