Matches in SemOpenAlex for { <https://semopenalex.org/work/W2050786039> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W2050786039 abstract "The classical zeta function of Lerch has an analytic continuation as a distribution on the circle which seems to be very different from its usual analytic continuation; for example, the Bernoulli polynomials come out upside down. In this note functions on the circle T = R/Z are identified with periodic distributions on the line, and L2(T, C) = L2(T, C)/C is the reduced Lebesgue space of nonconstant square-integrable periodic functions. This Hilbert space has the wellknown basis e(nx) = e2f1nx n E Z-{t}, x E [0,1]. The complex powers of the Laplace operator [10] define an analytic group (-/A)of operators on L2(T, C), and if a = re s is sufficiently large, the prescription (-A) -s/2e(nx) = n -se(nx) leads to the integral representation (_A)Ys/2,0(X) = J1 Ks(x, y)>O(y) dy for these complex powers by the kernel Ks(x, y) = E n-se(nx)e(-ny). f1 0 Note that Ks(x, y) = l(s, x -y) + l(s, y -x), where l(s, x) = E e(nx)n -s tI > 1 is a quite classical function. (See [14, ?9.7, Example 2]; in particular, if x 0 Z, then it has an analytic continuation, andsince for x 0 0,(d/dx)(s, x) = 2vil(s 1, x)-it is smooth away from the origin.) Now by Schwartz's kernel theorem [9] there is an analytic function of s, taking values in the distribution on T x T which are smooth away from the diagonal, representing (_A)s/2 for all s in C. In particular, we can think of Ks as taking values in the distributions on the line smooth away from the origin. The result in this paper is a formula for this kernel modulo functions smooth at the origin. Received by the editors March 19, 1984 and, in revised form, June 11, 1984. 1980 Mathemlatics Subject Classificcation. Primary 1OH1O, 58G15, 81A19. ?1985 American Mathematical Society 0002-9939/85 $1.00 + $.25 per page" @default.
- W2050786039 created "2016-06-24" @default.
- W2050786039 creator A5053281576 @default.
- W2050786039 date "1985-02-01" @default.
- W2050786039 modified "2023-09-26" @default.
- W2050786039 title "Complex powers of the Laplace operator on the circle" @default.
- W2050786039 cites W1490039160 @default.
- W2050786039 cites W1504849317 @default.
- W2050786039 cites W1521387900 @default.
- W2050786039 cites W1524379737 @default.
- W2050786039 cites W1597741994 @default.
- W2050786039 cites W1837173426 @default.
- W2050786039 cites W1981832559 @default.
- W2050786039 cites W2015652800 @default.
- W2050786039 cites W2064953048 @default.
- W2050786039 cites W2078633772 @default.
- W2050786039 cites W2560937511 @default.
- W2050786039 cites W2799242450 @default.
- W2050786039 cites W2999235684 @default.
- W2050786039 doi "https://doi.org/10.1090/s0002-9939-1985-0784165-x" @default.
- W2050786039 hasPublicationYear "1985" @default.
- W2050786039 type Work @default.
- W2050786039 sameAs 2050786039 @default.
- W2050786039 citedByCount "2" @default.
- W2050786039 crossrefType "journal-article" @default.
- W2050786039 hasAuthorship W2050786039A5053281576 @default.
- W2050786039 hasBestOaLocation W20507860391 @default.
- W2050786039 hasConcept C104317684 @default.
- W2050786039 hasConcept C114614502 @default.
- W2050786039 hasConcept C134306372 @default.
- W2050786039 hasConcept C151602998 @default.
- W2050786039 hasConcept C158448853 @default.
- W2050786039 hasConcept C17020691 @default.
- W2050786039 hasConcept C185592680 @default.
- W2050786039 hasConcept C190333341 @default.
- W2050786039 hasConcept C202444582 @default.
- W2050786039 hasConcept C205979905 @default.
- W2050786039 hasConcept C33923547 @default.
- W2050786039 hasConcept C55493867 @default.
- W2050786039 hasConcept C75413324 @default.
- W2050786039 hasConcept C86339819 @default.
- W2050786039 hasConceptScore W2050786039C104317684 @default.
- W2050786039 hasConceptScore W2050786039C114614502 @default.
- W2050786039 hasConceptScore W2050786039C134306372 @default.
- W2050786039 hasConceptScore W2050786039C151602998 @default.
- W2050786039 hasConceptScore W2050786039C158448853 @default.
- W2050786039 hasConceptScore W2050786039C17020691 @default.
- W2050786039 hasConceptScore W2050786039C185592680 @default.
- W2050786039 hasConceptScore W2050786039C190333341 @default.
- W2050786039 hasConceptScore W2050786039C202444582 @default.
- W2050786039 hasConceptScore W2050786039C205979905 @default.
- W2050786039 hasConceptScore W2050786039C33923547 @default.
- W2050786039 hasConceptScore W2050786039C55493867 @default.
- W2050786039 hasConceptScore W2050786039C75413324 @default.
- W2050786039 hasConceptScore W2050786039C86339819 @default.
- W2050786039 hasLocation W20507860391 @default.
- W2050786039 hasOpenAccess W2050786039 @default.
- W2050786039 hasPrimaryLocation W20507860391 @default.
- W2050786039 hasRelatedWork W1979041851 @default.
- W2050786039 hasRelatedWork W1996015531 @default.
- W2050786039 hasRelatedWork W1996624184 @default.
- W2050786039 hasRelatedWork W2001167372 @default.
- W2050786039 hasRelatedWork W2005370379 @default.
- W2050786039 hasRelatedWork W2041421947 @default.
- W2050786039 hasRelatedWork W2058294074 @default.
- W2050786039 hasRelatedWork W2065856524 @default.
- W2050786039 hasRelatedWork W2068007165 @default.
- W2050786039 hasRelatedWork W2108685975 @default.
- W2050786039 hasRelatedWork W3021788336 @default.
- W2050786039 hasRelatedWork W88887172 @default.
- W2050786039 hasRelatedWork W923686640 @default.
- W2050786039 isParatext "false" @default.
- W2050786039 isRetracted "false" @default.
- W2050786039 magId "2050786039" @default.
- W2050786039 workType "article" @default.