Matches in SemOpenAlex for { <https://semopenalex.org/work/W2050790622> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2050790622 endingPage "4172" @default.
- W2050790622 startingPage "4147" @default.
- W2050790622 abstract "Abstract This paper addresses a micromechanics based strength theory to estimate the ultimate strength of unidirectionally fiber reinforced composites. The fibers used can be transversely isotropic in an elastic region but become isotropically hardening in a plastic one. The matrix material is considered as isotropically elastic–plastic. The stress state generated in each constituent material is explicitly expressed as a function of overall applied loads by making use of a bridging matrix that correlates the stress state in the fibers with that in the matrix. In this way, the composite strength is treated in terms of those of the constituent materials. Whenever one of the constituent materials attains its failure stress state, the corresponding overall applied stress is defined as the ultimate strength of the composite. This is because in most cases either the fiber fracture or the matrix breaking is the source that initiates the composite failure. The well-developed maximum normal stress theory of isotropic materials is applied to govern the constituent failure. One of the best advantages of the present theory is that the composite strength can be well estimated using minimum number of input data, which are the constituent properties and the fiber volume fraction only. Another advantage is that the failure mode and the stress level in each constituent material are automatically indicated when the composite fails. Such information is important for composite design. The present theory has been used to predict the off-axial strengths or strength envelop of a number of unidirectional composites. Good correlation between the predicted strengths and available experimental data has been found. Application to laminate strength analysis has been shown. The simulated strength envelope of an angle-plied laminate using original constituent properties agrees well with experimental data. Comparison of this strength theory with another well-known phenomenological theory, the Tsai–Wu theory, shows that the present theory is grossly much more accurate for the considered laminate, which indicates that understanding of the matrix inelastic deformation is critical for laminate strength analysis." @default.
- W2050790622 created "2016-06-24" @default.
- W2050790622 creator A5080158470 @default.
- W2050790622 date "2001-05-01" @default.
- W2050790622 modified "2023-10-01" @default.
- W2050790622 title "Micromechanical prediction of ultimate strength of transversely isotropic fibrous composites" @default.
- W2050790622 cites W1490971148 @default.
- W2050790622 cites W1976771816 @default.
- W2050790622 cites W1976829629 @default.
- W2050790622 cites W1977692470 @default.
- W2050790622 cites W1979376338 @default.
- W2050790622 cites W1982085032 @default.
- W2050790622 cites W1982194636 @default.
- W2050790622 cites W2000267297 @default.
- W2050790622 cites W2003581415 @default.
- W2050790622 cites W2014819064 @default.
- W2050790622 cites W2029122305 @default.
- W2050790622 cites W2030320155 @default.
- W2050790622 cites W2035395517 @default.
- W2050790622 cites W2039022809 @default.
- W2050790622 cites W2056389306 @default.
- W2050790622 cites W2058501982 @default.
- W2050790622 cites W2062728018 @default.
- W2050790622 cites W2091183588 @default.
- W2050790622 cites W4233279195 @default.
- W2050790622 doi "https://doi.org/10.1016/s0020-7683(00)00268-7" @default.
- W2050790622 hasPublicationYear "2001" @default.
- W2050790622 type Work @default.
- W2050790622 sameAs 2050790622 @default.
- W2050790622 citedByCount "120" @default.
- W2050790622 countsByYear W20507906222012 @default.
- W2050790622 countsByYear W20507906222013 @default.
- W2050790622 countsByYear W20507906222014 @default.
- W2050790622 countsByYear W20507906222015 @default.
- W2050790622 countsByYear W20507906222016 @default.
- W2050790622 countsByYear W20507906222017 @default.
- W2050790622 countsByYear W20507906222018 @default.
- W2050790622 countsByYear W20507906222019 @default.
- W2050790622 countsByYear W20507906222020 @default.
- W2050790622 countsByYear W20507906222021 @default.
- W2050790622 countsByYear W20507906222022 @default.
- W2050790622 countsByYear W20507906222023 @default.
- W2050790622 crossrefType "journal-article" @default.
- W2050790622 hasAuthorship W2050790622A5080158470 @default.
- W2050790622 hasConcept C101842124 @default.
- W2050790622 hasConcept C104779481 @default.
- W2050790622 hasConcept C112950240 @default.
- W2050790622 hasConcept C121332964 @default.
- W2050790622 hasConcept C159985019 @default.
- W2050790622 hasConcept C184050105 @default.
- W2050790622 hasConcept C192562407 @default.
- W2050790622 hasConcept C37167619 @default.
- W2050790622 hasConcept C62520636 @default.
- W2050790622 hasConceptScore W2050790622C101842124 @default.
- W2050790622 hasConceptScore W2050790622C104779481 @default.
- W2050790622 hasConceptScore W2050790622C112950240 @default.
- W2050790622 hasConceptScore W2050790622C121332964 @default.
- W2050790622 hasConceptScore W2050790622C159985019 @default.
- W2050790622 hasConceptScore W2050790622C184050105 @default.
- W2050790622 hasConceptScore W2050790622C192562407 @default.
- W2050790622 hasConceptScore W2050790622C37167619 @default.
- W2050790622 hasConceptScore W2050790622C62520636 @default.
- W2050790622 hasIssue "22-23" @default.
- W2050790622 hasLocation W20507906221 @default.
- W2050790622 hasOpenAccess W2050790622 @default.
- W2050790622 hasPrimaryLocation W20507906221 @default.
- W2050790622 hasRelatedWork W1975608897 @default.
- W2050790622 hasRelatedWork W1997159941 @default.
- W2050790622 hasRelatedWork W2387616028 @default.
- W2050790622 hasRelatedWork W2531393654 @default.
- W2050790622 hasRelatedWork W2729932191 @default.
- W2050790622 hasRelatedWork W2795554382 @default.
- W2050790622 hasRelatedWork W2979134103 @default.
- W2050790622 hasRelatedWork W3122552578 @default.
- W2050790622 hasRelatedWork W4285731133 @default.
- W2050790622 hasRelatedWork W174952828 @default.
- W2050790622 hasVolume "38" @default.
- W2050790622 isParatext "false" @default.
- W2050790622 isRetracted "false" @default.
- W2050790622 magId "2050790622" @default.
- W2050790622 workType "article" @default.