Matches in SemOpenAlex for { <https://semopenalex.org/work/W2050829238> ?p ?o ?g. }
- W2050829238 endingPage "14264" @default.
- W2050829238 startingPage "14249" @default.
- W2050829238 abstract "Seven perylene-porphyrin dyads were examined with the goal of identifying those most suitable for components of light-harvesting systems. The ideal dyad should exhibit strong absorption by the perylene in the green, undergo rapid and efficient excited-state energy transfer from perylene to porphyrin, and avoid electron-transfer quenching of the porphyrin excited state by the perylene in the medium of interest. Four dyads have different perylenes at the p-position of the meso-aryl group on the zinc porphyrin. The most suitable perylene identified in that set was then incorporated at the m- or o-position of the zinc porphyrin, affording two other dyads. An analogue of the o-substituted architecture was prepared in which the zinc porphyrin was replaced with the free base porphyrin. The perylene in each dyad is a monoimide derivative; the perylenes differ in attachment of the linker (either via a diphenylethyne linker at the N-imide or an ethynylphenyl linker at the C9 position) and the number (0-3) of 4-tert-butylphenoxy groups (which increase solubility and slightly alter the electrochemical potentials). In the p-linked dyad, the monophenoxy perylene with an N-imide diphenylethyne linker is superior in providing rapid and essentially quantitative energy transfer from excited perylene to zinc porphyrin with minimal electron-transfer quenching in both toluene and benzonitrile. The dyads with the same perylene at the m- or o-position exhibited similar results except for one case, the o-linked dyad bearing the zinc porphyrin in benzonitrile, where significant excited-state quenching is observed; this phenomenon is facilitated by close spatial approach of the perylene and porphyrin and the associated thermodynamic/kinetic enhancement of the electron-transfer process. Such quenching does not occur with the free base porphyrin because electron transfer is thermodynamically unfavorable even in the polar medium. The p-linked dyad containing a zinc porphyrin attached to a bis(4-tert-butylphenoxy)perylene via an ethynylphenyl linker at the C9 position exhibits ultrafast and quantitative energy transfer in toluene; the same dyad in benzonitrile exhibits ultrafast (<0.5 ps) perylene-to-porphyrin energy transfer, rapid (∼5 ps) porphyrin-to-perylene electron transfer, and fast (∼25 ps) charge recombination to the ground state. Collectively, this study has identified suitable perylene-porphyrin constructs for use in light-harvesting applications." @default.
- W2050829238 created "2016-06-24" @default.
- W2050829238 creator A5004946688 @default.
- W2050829238 creator A5007273317 @default.
- W2050829238 creator A5012555254 @default.
- W2050829238 creator A5020492532 @default.
- W2050829238 creator A5021962248 @default.
- W2050829238 creator A5027205994 @default.
- W2050829238 creator A5029454398 @default.
- W2050829238 creator A5033082209 @default.
- W2050829238 creator A5051528692 @default.
- W2050829238 creator A5069007068 @default.
- W2050829238 creator A5071790306 @default.
- W2050829238 creator A5076604331 @default.
- W2050829238 creator A5077097516 @default.
- W2050829238 creator A5083917347 @default.
- W2050829238 date "2010-01-29" @default.
- W2050829238 modified "2023-09-23" @default.
- W2050829238 title "Excited-State Photodynamics of Perylene−Porphyrin Dyads. 5. Tuning Light-Harvesting Characteristics via Perylene Substituents, Connection Motif, and Three-Dimensional Architecture" @default.
- W2050829238 cites W1499074827 @default.
- W2050829238 cites W1861268377 @default.
- W2050829238 cites W1922082163 @default.
- W2050829238 cites W1964288321 @default.
- W2050829238 cites W1965693407 @default.
- W2050829238 cites W1974518265 @default.
- W2050829238 cites W1976077292 @default.
- W2050829238 cites W1977282984 @default.
- W2050829238 cites W1984881210 @default.
- W2050829238 cites W1997022228 @default.
- W2050829238 cites W1997355450 @default.
- W2050829238 cites W1997540477 @default.
- W2050829238 cites W2003961990 @default.
- W2050829238 cites W2004521439 @default.
- W2050829238 cites W2007762585 @default.
- W2050829238 cites W2019892604 @default.
- W2050829238 cites W2023809822 @default.
- W2050829238 cites W2026727249 @default.
- W2050829238 cites W2030820076 @default.
- W2050829238 cites W2034116869 @default.
- W2050829238 cites W2036094647 @default.
- W2050829238 cites W2037596012 @default.
- W2050829238 cites W2038421329 @default.
- W2050829238 cites W2039814463 @default.
- W2050829238 cites W2049337304 @default.
- W2050829238 cites W2051093412 @default.
- W2050829238 cites W2052932844 @default.
- W2050829238 cites W2056352715 @default.
- W2050829238 cites W2070219114 @default.
- W2050829238 cites W2070527738 @default.
- W2050829238 cites W2078039581 @default.
- W2050829238 cites W2082741264 @default.
- W2050829238 cites W2084228311 @default.
- W2050829238 cites W2087990795 @default.
- W2050829238 cites W2090488076 @default.
- W2050829238 cites W2090628692 @default.
- W2050829238 cites W2094923026 @default.
- W2050829238 cites W2104569132 @default.
- W2050829238 cites W2109523641 @default.
- W2050829238 cites W2135161174 @default.
- W2050829238 cites W2140002597 @default.
- W2050829238 cites W2144149256 @default.
- W2050829238 cites W2145259854 @default.
- W2050829238 cites W2150873913 @default.
- W2050829238 cites W2152278650 @default.
- W2050829238 cites W2168466836 @default.
- W2050829238 cites W2505343817 @default.
- W2050829238 cites W2951649816 @default.
- W2050829238 cites W4255077366 @default.
- W2050829238 doi "https://doi.org/10.1021/jp910705q" @default.
- W2050829238 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/20112987" @default.
- W2050829238 hasPublicationYear "2010" @default.
- W2050829238 type Work @default.
- W2050829238 sameAs 2050829238 @default.
- W2050829238 citedByCount "22" @default.
- W2050829238 countsByYear W20508292382012 @default.
- W2050829238 countsByYear W20508292382013 @default.
- W2050829238 countsByYear W20508292382014 @default.
- W2050829238 countsByYear W20508292382015 @default.
- W2050829238 countsByYear W20508292382016 @default.
- W2050829238 countsByYear W20508292382018 @default.
- W2050829238 countsByYear W20508292382022 @default.
- W2050829238 crossrefType "journal-article" @default.
- W2050829238 hasAuthorship W2050829238A5004946688 @default.
- W2050829238 hasAuthorship W2050829238A5007273317 @default.
- W2050829238 hasAuthorship W2050829238A5012555254 @default.
- W2050829238 hasAuthorship W2050829238A5020492532 @default.
- W2050829238 hasAuthorship W2050829238A5021962248 @default.
- W2050829238 hasAuthorship W2050829238A5027205994 @default.
- W2050829238 hasAuthorship W2050829238A5029454398 @default.
- W2050829238 hasAuthorship W2050829238A5033082209 @default.
- W2050829238 hasAuthorship W2050829238A5051528692 @default.
- W2050829238 hasAuthorship W2050829238A5069007068 @default.
- W2050829238 hasAuthorship W2050829238A5071790306 @default.
- W2050829238 hasAuthorship W2050829238A5076604331 @default.
- W2050829238 hasAuthorship W2050829238A5077097516 @default.
- W2050829238 hasAuthorship W2050829238A5083917347 @default.
- W2050829238 hasConcept C111919701 @default.
- W2050829238 hasConcept C121332964 @default.